
Genome sequencing and large-scale genetic analyses 
have unmasked the enormous scale of genetic interac-
tions in biological systems1,2. A key challenge now is to 
understand how genes function as networks to carry 
out and regulate cellular processes. Many recent insights 
into genetic interactions and networks have emerged 
from studies using the yeast Saccharomyces cerevisiae, 
in which powerful functional genomic tools allow 
systematic analyses3,4, revealing both novel interacting 
components and key properties of the genetic networks 
in which they participate. A general understanding of 
the topology of genetic-interaction networks, which is 
rapidly being gained for yeast, has a wider importance, 
because similar networks are expected to underlie 
the relationship between genotype and phenotype in 
outbred populations in which combinations of specific 
alleles determine the fitness of individuals. In terms 
of human disease, numerous modifiers and enhancers 
contribute to complex genetic disorders, but the topol-
ogy of the underlying networks is largely unknown. 
Thus, mapping genetic networks in model organ-
isms such as yeast provides an important framework 
for studying genetic interactions in more complex 
systems.

Here we provide a detailed discussion of the tools 
that have allowed genetic interactions to be so exten-
sively mapped in S. cerevisiae and the insights that 
they provide into the structure and function of genetic 
networks in this organism. We then examine how this 
knowledge can be applied more widely to gain an under-
standing of gene networks in complex traits, including 
human disease.

Enhancement genetics: synthetic lethality
Large-scale genetic analyses reveal that mutations in 
most eukaryotic genes have little discernable effect. 
For example, systematic gene deletion in S. cerevisiae, 
discussed in detail below, produced a remarkable result: 
only ~20% of yeast genes are essential for viability when 
deleted individually in haploids growing in standard 
laboratory conditions5,6. Recent systematic analyses 
revealed a measurable growth phenotype under at least 
one condition for virtually every yeast gene deletion7,8. 
Nonetheless, the ability of most deletion mutants to 
grow under optimal conditions reflects the robustness of 
biological circuits and cellular buffering against genetic 
variation, underscoring a key property of biological net-
works: their resilience to attack at a single node9,10.

Synthetic enhancement genetics can be used to exam-
ine how mutations in two genes interact to modulate a 
phenotype. Essentially, synthetic enhancement screens 
represent an application of Fisher’s definition of epistasis 
(BOX 1) — in this case, a double mutant shows an unex-
pected, non-multiplicative phenotype, the most dramatic 
being inviability. Early genetic investigations using the 
fruitfly found that some pairwise combinations of mutant 
alleles were inviable, whereas singly, the same alleles 
were viable11,12, a phenomenon termed synthetic lethality 
(BOX 2). Yeast geneticists embraced the tools of synthetic 
enhancement to assist in functional analyses13 (reviewed 
in REF. 14). However, synthetic enhancement combina-
tions are infrequent in the large combinatorial sea of 
possible pairs of genes, and finding interacting partners 
for a given gene has required the development of sensitive 
and selective screening methods15,16.

*Banting & Best Department 
of Medical Research and 
Terrence Donnelly Centre for 
Cellular & Biomolecular 
Research, University of 
Toronto, 160 College Street, 
Toronto M5S 3E1, Canada.
‡Department of Biology, 
McGill University,1205 
Docteur Penfield, Montreal 
H3A 1B1, Quebec, Canada.
Correspondence to C.B. or 
B.J.A. e-mails: 
charlie.boone@utoronto.ca; 
brenda.andrews@utoronto.ca
doi:10.1038/nrg2085

Synthetic enhancement
The situation in which a 
mutation in one gene 
exacerbates the phenotypic 
severity of a mutation in a 
second gene.

Synthetic lethality
The situation in which two 
genes that are non-essential 
when individually mutated 
cause lethality when they are 
combined as a double mutant.

Exploring genetic interactions and 
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Abstract | The development and application of genetic tools and resources has enabled 
a partial genetic-interaction network for the yeast Saccharomyces cerevisiae to be 
compiled. Analysis of the network, which is ongoing, has already provided a clear picture 
of the nature and scale of the genetic interactions that robustly sustain biological 
systems, and how cellular buffering is achieved at the molecular level. Recent studies in 
yeast have begun to define general principles of genetic networks, and also pave the way 
for similar studies in metazoan model systems. A comparative understanding of genetic-
interaction networks promises insights into some long-standing genetic problems, such 
as the nature of quantitative traits and the basis of complex inherited disease.
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Haploinsufficiency
The situation in diploid cells in 
which heterozygous mutants 
that produce a reduced 
amount of functional gene 
product can be less robust 
than the wild type to 
perturbations that affect 
essential functions.

Tetrad analysis
The four haploid cells that are 
produced by an individual 
meiosis in budding yeast are 
referred to as a tetrad. The 
tetrad is enclosed in a sac 
called an ascus. Tetrad analysis 
involves the isolation and 
analysis of the haploid meiotic 
spores of individual asci for the 
segregation of genetic markers.

Functional genomic tools for systematic genetics
Compiling genetic interactions case by case as a 
by-product of directed biological studies is highly 
informative. However, genomics allows genetic net-
works to be built systematically. Only in this way can 
a complete genetic network be mapped (a goal that is 
still far from being achieved for any organism) and its 
full explanatory potential realized. Many technological 
platforms and tools have been created for large-scale 
functional analysis in S. cerevisiae17.

Deletion-mutant collection. By 2001, a deletion allele 
was available for each yeast gene5,6. In these deletion 
strains, the entire target gene is replaced with a kanamy-
cin-resistance marker18 plus two unique 20-bp flanking 
barcodes (FIG. 1a). In this way, the abundance of each 
mutant can be quantified from a mixed population 
using a barcode microarray (FIG. 1b).

The yeast gene-deletion set is a key resource for large-
scale and systematic genetics. The collection includes 
~6,000 heterozygous diploid strains, each of which is 
deleted for a single copy of a specific gene in the S288c 
genetic background. Deletion alleles for all S. cerevisiae 
genes are represented and, apart from a few hundred 
haploinsufficient genes (~3%), the heterozygous mutants 
grow normally on a rich medium8. Tetrad analysis of the 
heterozygous strains identified ~1,000 deletion mutants 
that failed to grow as haploid meiotic progeny, thereby 
defining the S. cerevisiae essential gene set and creating 
a set of ~5,000 viable haploid deletion-mutant strains5. 
Mating of these mutants generated a set of ~5,000 
homozygous diploid mutants, which carry a deletion of 
both alleles of each gene. As the roster of ORFs has been 
revised, largely through sequencing of evolutionarily 
related yeast species19,20, the deletion-mutant set has been 
correspondingly updated21. 

Essential gene mutant collections. Conditional alleles of 
the ~1,000 essential S. cerevisiae genes are required to 
enable systematic genetic analysis. There is value in gen-
erating a variety of collections of essential gene alleles, 
as they are likely to provide complementary information 
in systematic function and genetic interactions of this 
important gene set. An extensive set of promoter-shutoff 
strains, in which an essential gene is placed under the 
control of a tetracycline (tet)-repressible promoter, has 
been constructed22. In these strains, the endogenous 
promoter of an essential gene is replaced with one that 
binds a tet-repressible transcriptional activator, which 
is expressed constitutively. Both the engineered essen-
tial gene and the tet-responsive activator are linked to 
selectable markers, for ease of use in genetic analysis.

Temperature-sensitive (ts) conditional alleles of 
essential genes have been used traditionally for study-
ing essential processes such as cell-cycle control and 
secretion. The recently introduced ‘heat-inducible 
degron system’ provides a simple way to systematically 
generate ts alleles of essential genes23. An Arg-Dhfr(ts) 
protein, a ts variant of dihydrofolate reductase, carrying 
an amino (N)-terminal arginine (Arg) residue (a desta-
bilizing residue according to the N-end rule), functions 
as a heat-activated degron, resulting in destruction of 
the tagged protein at 37°C. Large collections of degron 
alleles of essential genes have been made and subjected to 
phenotypic analysis24. In addition, ts alleles for ~50% of 
essential genes have been collected, and these are being 
integrated into the same strain background as the deletion 
collection (C.B. and B.J.A., unpublished observations).

Hypomorphic allele collections can also be constructed 
systematically. For example, replacing the 3′ UTR of 
an essential gene with a selectable marker often leads 
to lower transcript levels and a resultant phenotype25 
— a method known as DAmP (decreased abundance by 
mRNA perturbation).

Comprehensive gene-overexpression libraries. The 
complete set of yeast genes has been cloned into several 
yeast vectors that allow expression under the control 
of the strong galactose-inducible GAL1 promoter, 

Box 1 | Epistasis

A review by Philips from 1998 describes the early literature on epistasis, much of 
which refers to the fruitfly, Drosophila melanogaster77. The language of genetic 
interactions has been profoundly influenced by these early studies and has led to 
two related but distinct meanings of the term epistasis, both of which derive from 
the quantitative analysis of double-mutant phenotypes and are relevant to large-
scale mapping and interpretation of genetic networks.

One view of epistasis derives from the world of statistical genetics. Fisher referred 
to deviations from the expected quantitative combination of independently 
functioning genes as ‘epistacy’78, a concept that has been adopted by quantitative 
geneticists to describe a range of genetic interactions. The Fisher definition is quite 
general and inclusive, and encompasses any phenotype of a given double mutant 
that cannot be anticipated by simply combining its component single-locus effects 
multiplicatively. In other words, in the absence of a genetic interaction, the fitness 
of a double-mutant is expected to be the product of the individual fitness of the 
corresponding single mutants. For example, consider a yeast strain that carries a 
mutation in gene A, conferring a defective response, and consequent increased 
sensitivity, to the DNA-damaging agent methyl methanesulphonate (MMS), with a 
20% growth-rate reduction compared with a wild-type strain at the same dose of 
MMS. Likewise, mutant B shows an MMS sensitivity with a 10% growth-rate 
reduction. The double mutant, however, grows 90% slower than the wild type in the 
presence of MMS, such that the genetic combination causes a much more severe 
phenotype than expected for the combination of the mutant B allele within the 
mutant A genetic background (0.8 × 0.9 = 0.72, or a 28%-reduced growth rate). One 
interpretation of this type of genetic interaction is that both genes might be 
involved in DNA repair but occur in separate pathways, such that the cell can 
tolerate loss-of-function mutations in either pathway but not both.

The second definition of epistasis derives from the pioneering work of Bateson, 
who coined the term to explain genetic interactions that alter single Mendelian 
gene effects. The Bateson definition is familiar to classical and molecular 
geneticists, who typically use epistasis to describe situations in which the activity 
of one gene masks effects at another locus, allowing inferences about the order of 
gene action. As a simple example, consider the yeast transcriptional activator 
SWI5 — mutation of SWI5 results in a failure to express the HO endonuclease gene 
that is required for mating-type switching. The swi5 mutant phenotype is 
suppressed by loss-of-function mutations in the SIN3 gene, which encodes a 
transcriptional repressor79. According to the Bateson definition, SIN3 is epistatic to 
SWI5, because its mutation masks defects in SWI5. This observation allows an 
inference to be made about a pathway (in this case, that the SIN3 product lies 
downstream of the SWI5 product in a common pathway). Classical examples of 
Bateson-type epistasis analysis include studies of signalling pathways that control 
the yeast cell cycle80 and pheromone responses (reviewed in REF. 81), development 
in the nematode worm Caenorhabditis elegans 82 and sex determination in 
D. melanogaster83.
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N-end rule
Relates the in vivo half-life 
of a protein to the identity of 
its N-terminal residue. In 
eukaryotes, the N-end rule 
pathway is part of the 
ubiquitin system.

Hypomorphic
Describes an allele that carries 
a mutation that causes a 
partial loss of gene function.

Synthetic genetic array 
analysis
A robotic procedure that is 
used to create, select and 
systematically examine the 
growth phenotypes of yeast 
double-mutant haploid strains.

Pinning
The use of hand-held or robotic 
tools, which are composed 
of small floating pinheads, 
to replicate yeast colonies to 
different media for genetic 
tests (typical formats include 
96, 384, 768 and 1,536 
pinheads per replica tool).

typically resulting in protein overproduction. Partial 
but significant collections of genes have been con-
structed encoding GAL1-regulated proteins, which 
are either untagged or carry a carboxy (C)-terminal 
Flag epitope26,27. Complete collections of genes have 
also been generated that encode proteins tagged with 
N-terminal glutathione S-transferase (GST)–histidine 6 
(His6) or C-terminal His6–HA–ZZ28,29. Although over-
expression and tagging of proteins is valuable, there can 
be limitations with such collections owing to dosage and 
functional issues. To obviate such limitations, ordered 
libraries of full-length genes under the control of their 
native promoters are under construction by our group 
and others.

Methods for systematic genetic analysis in yeast 
Synthetic genetic array (SGA) analysis. In its simplest 
form, synthetic genetic array analysis30 involves a series 
of replica-pinning procedures, in which mating and 
meiotic recombination are used to convert an input 
array of single mutants into an output array of double 
mutants (FIG. 2). SGA has been used extensively for syn-
thetic-lethal screening of non-essential genes involved 
in many cellular functions2. The final transfer step 
(FIG. 2e–f) results in an ordered array of double-mutant 
haploid strains, the growth rates of which can be quan-
titatively assessed25.

Essential-gene mutant collections can also be used 
both as queries and as input arrays in an SGA screen 

Box 2 | Mechanisms of synthetic-lethal interactions

What is the mechanistic basis for synthetic-lethal interactions? Because our knowledge of cellular functions is 
incomplete, we often do not understand why particular double mutants show a synthetic-lethal phenotype. However, 
possible mechanisms depend on the characteristics of the interacting alleles. For example, if both mutations occur in 
non-essential genes and are null alleles, the common interpretation is that the genes function in parallel pathways 
that impinge on a shared essential function (part a; thin lines indicate potential genetic interactions). This is often 
referred to as the ‘between-pathway’ model and typically reflects bidirectional genetic redundancy, in that each 
pathway compensates for defects in the other14,32,55. More elaborate mechanisms can be understood from a more 
detailed knowledge of gene function and pathway circuitry, such as a synthetic-lethal interaction that reflects 
‘unidirectional compensation’, whereby one pathway normally prevents a potentially harmful cellular event that can 
be corrected by another pathway32. A pertinent example involves the oxidative-stress response system, which 
precludes the accumulation of reactive oxygen species and protects the cell from DNA damage. By this mechanism, 
functional DNA repair pathways can compensate for defects in the oxidative-stress response system, but not the 
reverse.

The specific case of synthetic genetic interactions involving duplicated genes or paralogues is also of interest. Here 
recent systematic studies revealed that patterns of genetic interactions are divergent between duplicates, 
suggesting that paralogous genes maintain functional specificity84. Conversely, distant paralogues encoding 
metabolic genes can show synthetic interactions, indicating that the product of the evolved copy of the duplicated 
gene might retain sufficient activity to mask the loss of the conserved copy85.

For essential genes, in which single null mutations are lethal, conditional or hypomorphic alleles can be used to 
evaluate synthetic phenotypes. In these cases, interpretation is more complex, because interactions can occur ‘within 
pathways’ as well as between pathways. In the within-pathway model (part b; conditional mutations are indicated by 
an altered protein shape and a lower-case ‘c’), synthetic lethality indicates that both genes function in the same 
essential pathway, the function of which is diminished by each mutation14,86. In this context, synthetic lethality can 
result from mutations in genes that affect the same stage of the pathway; for instance, when mutations weaken 
interactions between subunits of a protein complex so that two mutations disrupt complex formation altogether, or 
render its function below the viability threshold. Biologically compelling examples of this type of interaction are seen 
in the yeast secretion system; most so-called SEC genes are essential, but synthetic-lethal interactions between sec 
mutants are highly specific for genes that are involved in the same stage of the system87, and also occur among 
protein-complex subunits (for example, the exocyst complex88).
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to generate networks that focus on essential genes. A 
proof-of-principle study generated a network of 567 
interactions, 386 of which occur between 286 essential 
genes1. The use of expanded collections should soon 
incorporate all essential genes in the global genetic-
interaction map (see below).

Diploid-based synthetic lethality analysis with 
microarrays (dSLAM). As an alternative to visualiz-
ing colonies in an array format, the barcodes that are 

associated with each deletion mutant enable quantifi-
cation of each double mutant in a mixed population. 
The dSLAM method takes advantage of this barcode 
approach31 (FIG. 3). Analysis of the barcode representa-
tion in each population, by hybridization to a barcode 
microarray, provides a measure of the relative fitness 
of the double mutants and identifies potential syn-
thetic interactions. dSLAM has been used to define 
a network of genes involved in maintaining genome 
integrity32.

Synthetic dosage-suppression and lethality. Other types 
of synthetic genetic interaction are powerful for navi-
gating genetic pathways, and have recently been incor-
porated into systematic platforms. Dosage-suppression 
analysis, in which mutants are screened for phenotypic 
suppression using a library of overexpressed genes, 
has augmented pathway analysis in yeast. In a typical 
dosage-suppression screen, a mutant that carries a ts 
allele of an essential gene is transformed with a genomic 
library, which is carried on a multicopy plasmid, at a 
growth-permissive temperature. The transformants 
are then screened for dosage suppressors at a restrictive 
temperature. For example, using a conditional allele 
of the cell-division cycle gene CDC28 that is defective 
only at the G2–M transition of the cell cycle, a screen 
for dosage suppressors identified a set of G2-specific 
B-type cyclins33. Hundreds of such dosage suppressors 
are known and have broadly contributed to our under-
standing of functional pathways34.

In a conceptually reciprocal approach, dosage-
lethality screens exploit features of both dosage-suppres-
sion and synthetic-lethal screens to identify interacting 
proteins. Synthetic dosage lethality (SDL) derives from 
the idea that increasing levels of a protein might have no 
effect on the growth of an otherwise wild-type strain, 
but might cause a phenotype — such as lethality — in 
a mutant strain in which the activity of an interacting 
protein is reduced35,36. For example, SDL defined a broad 
range of interacting mutations involving components 
of the yeast kinetochore and the origin recognition 
complex (ORC)35,37.

Current overexpression libraries have recently 
been arrayed so that SGA-based manipulations allow 
the introduction of any specific query mutation into a 
collection of ~6,000 yeast strains, each of which carries 
a unique gene-overexpression plasmid. This method 
allows rapid assessment of gene-overexpression pheno-
types in any mutant background of interest. In addition 
to examining loss-of-function phenotypes associated 
with deletion-mutant alleles, overexpression alleles 
enable the exploration of gain-of-function phenotypes 
to augment gene-function analysis38. Conversely, SDL 
can be assessed by scoring for an enhanced-fitness 
defect that is due to gene overexpression in any mutant 
background. As proof-of-principle, a deletion allele of 
PHO85, which encodes a cyclin-dependent kinase, 
was crossed to a gene-overexpression array, reveal-
ing 65 SDL interactions38, several of which involve 
in vivo substrates for the kinase (see below for more 
discussion).

Figure 1 | The yeast deletion collection and parallel analysis. a | Construction 
strategy for the yeast deletion-mutant collection. Each yeast ORF is replaced with a 
‘deletion cassette’ that consists of an antibiotic-resistance marker, kanR (which 
confers resistance to kanamycin), and two unique 20-nt molecular barcodes (‘uptag’ 
(UP) and ‘downtag’ (DN)). Each barcode is flanked by common primer sites (indicated 
by coloured half-arrows). Incorporation of the cassette into the yeast genome is 
accomplished through homologous recombination of 45-bp regions of homology 
upstream and downstream of the yeast ORF. b | Parallel analysis of large pools of 
deletion mutants. Populations of pooled mutant cells, each marked with unique 
molecular barcodes, are grown in the presence or absence of a growth-inhibitory 
drug. Genomic DNA is extracted from the pool of mutants, and barcodes that 
represent each strain are amplified by PCR using common primers that are labelled 
with fluorescent markers Cy3 or Cy5. Drug-sensitive mutants are identified by 
competitive hybridization of the barcode PCR products to a microarray that contains 
oligonucleotides corresponding to each barcode, giving a quantitative read-out of 
the representation of each mutant in a mixed population. 
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Haploinsufficiency. Other genetic interactions that reflect 
gene-dosage effects can be crucial for cellular and devel-
opmental homeostasis. In diploids, haploinsufficiency can 
arise when a mutation in one copy of an allelic pair reduces 
the amount of functional gene product to a point at 

which a phenotype is produced. Classically, a heterozygote 
is viewed as the wild type (that is, the mutant phenotype 
is recessive), and this is the case for most enzyme-coding 
genes39. However, for human transcription factors, over 
65% of disease-causing mutations are dominant, and might 
reflect a haploinsufficient phenotype39. Haploinsufficiency 
can be particularly significant in the context of environ-
mental or chemical interactions and has been exploited 
extensively to link inhibitory bioactive molecules to their 
targets, as heterozygote target-gene deletion mutants 
are often hypersensitive when compared with wild-type 
cells owing to their reduced target-gene dosage40,41.

The combination of two heterozygous mutations 
might lead to a genetic interaction in which the diploid 
hemizygote double mutant shows an extreme synergistic 
phenotype, such as synthetic lethality. This combinato-
rial double-mutant effect has been referred to as complex 
haploinsufficiency42. A screen of 4,800 complex hemizy-
gote yeast strains, in which an actin-null allele was com-
bined with the non-essential gene-deletion collection, 
identified 208 genes showing deleterious complex hap-
loinsufficient (CHI) interactions and many of the double 
mutants showed actin-based morphology defects. Thus, 
CHI genetic-interaction screens can provide extensive 
functional information if carried out on a global scale.

Quantitative mapping of epistatic relationships
Synthetic methodologies allow a quantitative assessment 
of the relative fitness of double-mutant meiotic progeny. 
This means that, in addition to Fisher’s general idea of 
epistasis, other more specific ones, including Bateson’s 
classical definition in which one allele masks the effects 
at another locus (BOX 1), can be examined globally. In the 
Fisher model, the double-mutant growth rate should devi-
ate from the expected multiplicative value that is associ-
ated with the combined single-mutant phenotypes, and 
this can potentially be examined in detail. In particular, 
so-called aggravating interactions, in which the double-
mutant fitness is lower than expected, might reflect sepa-
rate but compensatory pathways. Synthetic-lethal double 
mutants obviously deviate from the multiplicative; how-
ever, synthetic slow-growing double mutants with fitness 
rates that are less than either single mutant but equal to the 
expected multiplicative double-mutant fitness would not 
be scored as showing a genetic interaction. Using Fisher’s 
quantitative definition of epistasis may be important for 
identifying true interactions and thereby revise genetic 
networks that have not applied this model43.

In contrast to aggravating interactions, so-called 
alleviating interactions occur when the double-mutant 
fitness is greater than expected, such as cases in which 
the fitness defect of a double mutant is no greater than 
for either of the single mutants. This often occurs when 
genes function in the same non-essential pathway or 
complex. Indeed, a quantitative analysis of an SGA 
interaction map44 that focused on genes involved in 
endoplasmic reticulum (ER) to Golgi transport seems 
to support this idea, because genes in the same path-
way deviated from the expected multiplicative dou-
ble-mutant phenotype and displayed a level of fitness 
resembling the single-mutant phenotypes25. Thus, genes 

Figure 2 | The synthetic genetic array (SGA) methodology. a | A MATα strain carries a 
query mutation linked to a dominant selectable marker (represented as a filled black 
circle), such as the nourseothricin-resistance marker natMX, and the SGA reporter 
can1∆1::MFA1pr–HIS3 (in which MFA1pr–HIS3 is integrated into the genome such that 
it deletes the ORF of the CAN1 gene, which normally confers sensitivity to canavinine). 
This query strain is crossed to an ordered array of MATa deletion mutants (xxx∆). In 
each of these deletion strains, a single gene is disrupted by the insertion of a dominant 
selectable marker, such as the kanamycin-resistance (kanR) module (the disrupted 
gene is represented as a filled blue circle). b | The resultant heterozygous diploids are 
transferred to a medium with reduced carbon and nitrogen to induce sporulation and 
the formation of haploid meiotic spore progeny. c | Spores are transferred to a 
synthetic medium that lacks histidine, which allows for selective germination of MATa 
meiotic progeny because these cells express the SGA reporter can1∆1::MFA1pr–HIS3. 
To improve this selection, canavinine, which selects for can1∆1 and kills CAN1 cells, is 
included in the selection medium. d | The MATa meiotic progeny are transferred to a 
medium that contains kanamycin, which selects for single mutants, equivalent to the 
original array mutants and double mutants. e,f | An array of double mutants is selected 
on a medium that contains both nourseothricin and kanamycin. 
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in the same pathway share alleviating interactions with 
each other.

Exploring systems and pathways with quantitative and 
qualitative interaction maps. Several recent studies 
have widened the types of genetic interaction that can 
be identified in yeast. Drees45 and colleagues defined a 
range of interactions by enumerating all possible ‘greater 
than’, ‘less than’ and ‘equal to’ relationships among single- 
and double-mutant invasive growth phenotypes. They 
also scored for nine general types of epistatic interaction, 
including aggravating and alleviating types, but also for 
less familiar ones that were not previously considered. 
For example, in an ‘asynthetic’ interaction, a double 
mutant and its corresponding single mutants all have 
the same deviant phenotype, which is a specific subset of 
alleviating interactions. This broad analysis revealed that 
genetic interactions can occur frequently and allowed 
construction of elaborate interaction networks.

In a theoretical analysis, Segre and colleagues exam-
ined the predicted fitness of a double mutant under a 
multiplicative model and showed that, in addition to 
aggravating (antagonistic) synthetic effects, alleviating 
(buffering) interactions that ameliorate the effects of a 
mutation in double-mutant combinations are common 
among the genes involved in intermediary metabolism46. 
As with synthetic interaction studies, they found that 
alleviating interactions tend to be the same for related 
groups of genes, revealing functional or modular cluster-
ing. Comparisons between aggravating and alleviating 
effects revealed that, for most functional groups, interac-
tions were either largely aggravating or largely alleviat-
ing, but not mixed, an asymmetrical feature that they 
termed ‘monochromatic’.

In another study, 650 double-deletion strains were 
made, corresponding to all possible pairings of 26 dele-
tions that confer sensitivity to the DNA-damaging agent 
methyl methanesulphonate (MMS)43. The fitness of each 
strain was measured and examined with respect to the 
multiplicative neutral model. In the presence of MMS, 
approximately one-third of the unique double mutants 
that were tested were found to deviate from the multi-
plicative model, corresponding to both aggravating and 
alleviating combinations. Distinct forms of alleviating 
interactions were identified, and those that were asym-
metrical were used to infer pathway order corresponding 
to the classical Bateson definition of epistasis.

Properties of genetic networks
Genetic networks are complex but functionally coherent. 
Analysis of the large but still incomplete yeast genetic 
network offers a glimpse at its size and structure. From 
a set of SGA screens, a network of ~1,000 genes and 
~4,000 interactions was generated2. The number of 
genetic interactions averaged 34 in each screen for non-
essential genes2, with screens that were focused on essen-
tial genes exhibiting fivefold more interactions1. From 
these studies, we estimate that a global network will 
contain ~200,000 synthetic-lethal interactions. To put 
this number in context, there are ~1,000 essential genes 
in yeast, for which a single mutation leads to a lethal 

Figure 3 | Diploid-based synthetic lethality analysis with microarrays (dSLAM). 
a | The first step in this method is the construction of a haploid-convertible 
heterozygous diploid pool. A haploid selection synthetic genetic array (SGA) reporter, 
which includes sequences that flank the endogenous CAN1 locus (CAN1L–LEU2–
MFA1pr–HIS3–CAN1R), is transformed into a pool of heterozygous diploid deletion 
mutants to replace one copy of CAN1 in each mutant. In each of these deletion 
strains, a single gene is disrupted by the insertion of a kanamycin-resistance (kanR) 
module (the disrupted gene is represented as a filled blue circle), which is tagged with 
unique barcodes, and a wild-type copy of the same gene. Transformants are selected 
on plates and then pooled for genetic-interaction screens. b | For dSLAM, a query 
mutation that is linked to the URA3 selectable marker (represented as a filled black 
circle) is introduced into the pool of haploid-convertible heterozygous diploid strains 
by high-efficiency integrative transformation. Haploid single-mutant (control) or 
double-mutant (experimental) pools are selected after sporulation, through 
germination of spores on a medium that lacks histidine and selection for the relevant 
alleles. Genomic DNA samples are isolated from both pools and used as templates for 
PCR amplification of the tags, during which they are labelled with fluorescent dyes 
(Cy5 for the single-mutant pool and Cy3 for the double-mutant pool). Microarray 
analysis of these dye-labelled tags reveals the synthetic interaction between each of 
the corresponding deletion alleles with the query mutation.
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phenotype, but there are 200-fold more ways to generate 
a similar phenotype through a digenic synthetic-lethal 
interaction. This finding indicates that digenic interac-
tions might underlie many inherited phenotypes, and 
begins to explain why the analytical power of single-gene 
effects on many phenotypes has been so limited.

For both non-essential2,32 and essential genes1, genetic 
interactions tend to occur among functionally related 
genes (FIG. 4), although interactions of essential genes cor-
respond to a broader functional range. So, the set of inter-
actions that are observed for a particular query gene can 
be suggestive of its function, with the position of a gene 
in a genetic-interaction network being highly predictive 
of its molecular role. For example, when a deletion allele 
of BNI1, which functions in actin-based polarized secre-
tion and spindle orientation47, was screened against all 
viable gene-deletion mutants, most of the interacting 
genes had roles in cell polarity and spindle orientation 
(annotated as ‘mitosis’ in FIG. 4). By contrast, the genetic 
interactions for SGS1, which encodes a DNA helicase, 
were largely associated with roles in DNA synthesis and 
repair (FIG. 4).

The small world of genetic interactions. The current syn-
thetic genetic network for yeast has two properties that 
are shared by networks as diverse as the World Wide Web 
and protein–protein interaction maps48. First, the connec-
tivity distribution broadly follows a power-law distribu-
tion, containing many genes with few interactions and 
a few genes with many interactions2. Highly connected 
‘hub genes’ are likely to be more important for fitness 
than less connected genes, because random mutations in 
organisms that lack these genes are more likely to be asso-
ciated with a fitness defect. Indeed, yeast hub genes that 
are conserved in humans could be potential targets for 
anti-cancer drugs, because cancer cells often carry a large 
mutation load making them more susceptible to chemical 
perturbation, and therefore may be killed preferentially 
when network hubs are attacked49.

Second, the genetic network seems to be an example of 
a small-world network in which the length of the shortest 
path between a pair of vertices or nodes tends to be small 
(that is, the network has a short characteristic path length) 
and local neighbourhoods tend to be densely connected. 
The genetic network that was mapped by Tong et al.2 has a 
short characteristic path length of 3.3, which is consistent 
with a small-world network48. The topology of the genetic 
network also exhibits dense local neighbourhoods, as the 
immediate neighbours of a gene, its genetic-interaction 

partners, also tend to interact with one another2. The 
dense neighbourhood characteristic of small-world net-
works is of particular interest because it can be exploited 
to predict interactions, as previously shown for protein–
protein interactions50. Thus, if all the yeast genes are 
placed on a relatively sparse genetic network — that is, a 
network that contains most or all the genes with a small 
subset of their interactions — most interactions should 
be efficiently identified by testing for interactions among 
genes that share interaction partners (in the same neigh-
bourhood). Indeed, when the immediate neighbours of 
three query genes, SGS1, RAD27 or BIM1 were tested for 

interactions with one another, ~20% of the tested potential 
interactions were confirmed2, and were highly enriched 
compared with the 1% observed for the average query 

gene against all SGA-tested gene pairs.

Genetic networks reveal gene functions
Relationship between the physical-interaction and the 
genetic-interaction maps. Large-scale analysis of genetic 
networks has revealed a relationship between the physi-
cal-interaction and the genetic-interaction networks. 
The physical-interaction map, generated by large-scale 
two-hybrid51,52 or affinity purification followed by mass 
spectrometry identification26,43,53,54, provides a view of the 
gene products that assemble into soluble protein com-
plexes and function together as biochemical machines. 
Rather than physical information, the genetic-interaction 
map provides functional information, largely identify-
ing gene products that operate in functionally related 
pathways. Although genetic interactions overlap with 
protein–protein interactions more often than expected 
by chance, such overlap is relatively rare, occurring at a 
frequency of less than 1% (REF. 2).

Neither the genetic- nor the physical-interaction 
map has been deeply sampled so far, and the overlap 
between the maps might increase. Nonetheless, a large 
overlap between the two is not expected as far as genes 
that encode components of non-essential pathways are 
concerned, because physical interactions should occur 
among the pathway components but synthetic-lethal 
interactions would be precluded by definition (BOX 2; 
FIG. 5a). However, synthetic-lethal interactions are 
expected among the components of essential pathways 
and, in this case, physical and genetic interactions might 
overlap (BOX 2; FIG. 5b) — these are so-called within-
pathway interactions55. Regardless, essential genes often 
buffer numerous different pathways1, and therefore most 
interactions for these genes occur between pathways and 
show no overlap with physical interactions (FIG. 5b).

Because most genetic interactions do not overlap 
with physical interactions, the two types of interaction 
are said to be largely orthogonal55–57. Nevertheless, the 
genetic-interaction map is rich in physical-interaction 
information. For example, the set of interacting genes 
that is associated with a particular query is often enriched 
for all of the genes encoding the components of a func-
tionally related pathway or complex. This makes sense, 
because if the activity of a particular pathway or complex 
is required in the absence of function of the query gene, 
then genes encoding all of the important components 
of that pathway or complex should be identified in the 
synthetic-lethal screen. Because a given query gene 
often shows in the order of ~30 different interactions, 
and most pathways contain only a handful of genes, each 
gene seems to buffer numerous other pathways.

Precise biochemical functions can be deciphered 
from genetic-interaction maps because genes with prod-
ucts that function in the same pathway or complex often 
show a similar pattern of genetic interactions2. Indeed, 
clustering algorithms or other measures of shared genetic-
interaction patterns, such as the congruency score57, 
can be used to identify genes encoding components 

Nodes
In typical network diagrams, 
genes or proteins are 
represented as nodes, whereas 
the connections between the 
nodes are termed edges.

Clustering algorithms
Algorithms that group together 
objects that are ‘similar’; 
objects belonging to other 
clusters are ‘dissimilar’. 
Clustering algorithms have 
been used extensively to view 
large collections of biological 
data, such as microarray 
expression profiles and 
genetic-interaction data.

Congruency score
A numerical ranking of the 
degree of partner sharing in a 
network.
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Figure 4 | A yeast genetic-interaction network, as determined by synthetic genetic array (SGA) analysis. 
A genetic-interaction network was obtained by identifying synthetic-lethal or synthetic-sick interactions using SGA 
analysis. Genes are represented as nodes (shown as circles), and interactions are represented as edges (shown as lines) 
that connect the nodes: 291 interactions and 204 genes from eight different SGA screens are shown. Deletion-mutant 
alleles of BNI1, RAD27, SGS1, BBC1, NBP2, BIM1 and temperature-sensitive conditional alleles of ARP2 and ARP40 
were crossed to the set of ~5,000 viable yeast deletion mutants and scored for synthetic-lethal or synthetic-sick 
double-mutant interactions. All interactions were confirmed by tetrad analysis, with 8–14 tetrads examined in each 
case. The genes are coloured according to their cellular roles as annotated by the Yeast Proteome Database (YPD) 
(see the BIOBASE web site). Modified with permission from REF. 30 © (2001) American Association for the 
Advancement of Science.

of that pathway or complex (FIG. 6a). For example, on 
the basis of genetic-interaction patterns, CSM3 was 
linked to the S-phase replication checkpoint pathway 
and DYN3 (also known as YMR299c) was linked to the 
dynein–dynactin pathway2. From an extensive analysis 
of the DNA-integrity network in yeast, 16 functional 
modules or mini-pathways were identified on the basis 
of global patterns of genetic interactions32. Ultimately, 
the combination of the global genetic-interaction map 
and the physical-interaction map can be simplified by 
representation as a higher-order network in which the 
nodes represent complexes and pathways rather than 
individual genes, and the edges represent a collection 
of numerous synthetic genetic interactions that are 
associated with the individual genes of the pathway or 
complex55,57,58.

Deciphering enzyme target relationships from genetic 
networks. Because synthetic-lethal interactions 
often identify pathways that buffer one another, 
genetic-interaction maps are useful for predicting 
enzyme–substrate relationships. For example, if a gene 
encoding a kinase is identified in a synthetic-lethal 
screen, then genes encoding upstream activators 
and downstream targets of the kinase might also be 
found in the genetic-interaction profile from the same 
query. Indeed, a synthetic-lethal screen with a CLA4 query 
mutation identified both the gene encoding a p21-
activated kinase, STE20, and the formin gene BNI1, the 
product of which is postulated to be activated by 
the Ste20 kinase59.

By contrast, SDL can be particularly useful for iden-
tifying proteins that are negatively regulated by specific 
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enzymes. For example, if a kinase normally negatively 
regulates a particular substrate, then overproduction 
of that substrate in the relevant kinase mutant back-
ground might overwhelm the ability of the cell to cope 
with inappropriate regulation of a significant biological 
pathway. Indeed, of the 65 synthetic dosage interactions 
that were observed for the kinase gene PHO85 (REF. 38), 
four substrates of Pho85 (Pho4, Gsy1, Gsy2 and Gcn4) 
were identified, each of which is negatively regulated 
by Pho85 phosphorylation.

Challenges for the future
Synthetic lethality, population genetics and complex 
inherited human disease. Yeast genetic-interaction 
studies involve an inbred isogenic strain under a single 
set of growth conditions. However, in human popula-
tions the issues of an outbred population with high 
levels of genetic polymorphism and variable envi-
ronmental conditions add considerable complexity. 
The Kruglyak group used yeast to address the issue of 
polymorphism in genetic interactions60,61. Using varia-
tions in transcript expression levels between two yeast 
strains as ‘endophenotypes’ for QTL analysis, they 
examined the polymorphic alleles that were involved 
in the variation. Having identified a primary locus that 
functioned as a modulator of a given transcript or set of 
transcripts, they carried out a second search to identify 
any interacting secondary loci. Such locus pairs were 
estimated to be responsible for the variation that is 
seen among some 57% of transcripts. Importantly, 67% 
of the secondary loci that they identified had effects 
that were undetectable when assessed singly, the detec-
tion of which required the two-step search60,61. Because 
this strategy requires the identification of a primary 
locus on the basis of its individual effect on transcript 
level, it cannot be used to examine the frequency of 
pairs of polymorphic alleles that are singly undetect-
able but interact to affect transcript levels. Identifying 
such interacting loci remains a huge problem in all 
systems, including humans.

To identify candidate interacting alleles in complex 
disease, it is useful to have a detailed understanding 
of the genetic polymorphisms in a population so that 
they can be assessed as contributing allelic components 
in gene association studies. For humans, this idea has 
led to the generation of the human HapMap (see the 
International HapMap Project web site), a database that 
includes most of the common polymorphisms that are 
present in the human population62. An extension of this 
idea would be to sequence and compare the genomes 
of affected and unaffected relatives for a given disease. 
Although this goal remains unattainable, recent work 
in yeast approaches it: hybridization of DNA from 
yeast strains to highly overlapping whole-genome 
DNA microarrays now allows the global detection of 
polymorphisms to a single nucleotide resolution63. 
The application of such technology in deciphering the 
genomic basis of complex phenotypes has been dem-
onstrated64 and, although challenging, the extension of 
such an approach to more complex systems, including 
humans, can be contemplated.

Extrapolating from yeast: network conservation and 
prediction. Is the yeast genetic network likely to be a 
good comparative model for such networks in metazo-
ans? The creation of RNAi libraries to target all predicted 
genes in metazoan models and human genomes offers 
the potential for genome-wide analysis in complex sys-
tems. RNAi screens have been used to systematically 
identify the genes involved in many biological processes 
in Caenorhabditis elegans, and in fly and mammalian 
cell lines65,66, and screens to examine double-mutant 
interactions in metazoan systems are now underway. 
Focused analyses of interactions between genes involved 
in DNA repair and posterior patterning in the C. elegans 
embryo have already uncovered novel genes and genetic 

Figure 5 | Relationships between genetic and protein 
interactions for complexes. Interactions are shown for 
complexes, but the same principles apply to pathways. 
a | Genetic interactions between two non-essential 
complexes. Two complexes (A and B) comprising proteins 
that are encoded by non-essential genes are shown. 
Protein–protein interactions are indicated by contact 
between proteins (represented as coloured circles), 
whereas genetic interactions are indicated by black lines. 
Genetic interactions occur among the mutant alleles of 
the genes, but for representational purposes are shown 
here in the context of the proteins within the complexes. 
In this model, the two non-essential complexes impinge 
on the same essential pathway and buffer one another 
(as shown in FIG. 1a); therefore, genetic interactions 
occur between the two complexes, but do not occur for 
components within a particular complex. The genetic-
interaction pattern that is associated with each 
component of the complex is identical; that is, the genes 
that encode B1, B2 and B3 each show genetic 
interactions with the genes encoding A1, A2 and A3, and 
the reverse is also true. b | Genetic interactions that 
occur within an essential complex, and between an 
essential and a non-essential complex. The proteins in 
complex C are each encoded by essential genes. In this 
model, complex C is buffered by the activity of complex 
A and thus genetic interactions occur between each 
component of the two complexes as well as between the 
genes that encode complex C components (within-
pathway interactions).
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Figure 6 | Hierarchical clustering of genetic and chemical-genetic interactions. 
a | Two-dimensional hierarchical clustering of synthetic genetic interactions, as 
determined by synthetic genetic array (SGA) analysis. A small subset of the genetic 
interactions mapped by Tong et al.2 is shown. The hierarchical clustering algorithm 
organizes the query and array genes into sets that show similar patterns of genetic 
interactions (shown as red squares), thereby grouping together components of specific 
functional pathways and complexes. Large-scale mapping of genetic interactions 
provides a genetic-interaction phenotype for each gene, and clustering analysis orders 
genes into pathways and complexes. b | The left panel shows a chemical–genetic 
interaction, in which a deletion mutant, which lacks the product of the deleted gene 
(represented by a black X), is hypersensitive to a normally sublethal concentration of a 
growth-inhibitory compound. The right panel shows a synthetic-lethal genetic 
interaction in which two single deletions individually lead to viable mutants but are not 
viable in a double-mutant combination. Gene-deletion alleles that show chemical–
genetic interactions with a particular compound should also be synthetically lethal or 
sick when combined with a mutation in the compound target gene. c | Comparison of a 
chemical–genetic profile to a compendium of genetic interaction (synthetic lethal) 
profiles should identify the pathways and targets that are inhibited by drug treatment. 
A hypothetical example is shown. Deletion mutants 3, 5, and 6 are hypersensitive to 
compound X, and a mutation in query gene A leads to a fitness defect when combined 
with deletion alleles 1, 2, 3 and 4. Here the chemical–genetic profile of compound X 
resembles the genetic profile of gene B, identifying the product of gene B as a putative 
target of compound X. Part a modified with permission from REF. 2 © (2004) American 
Association for the Advancement of Science.

interactions for both processes67,68. More recently, large-
scale RNAi mapping of genetic interactions for signalling 
and transcriptional-regulatory pathways in C. elegans 
uncovered ~350 genetic interactions. Again, both known 
and novel signalling components were identified. Despite 
its currently modest size, the C. elegans genetic network 
recapitulates the topology of genetic networks in yeast69, 
suggesting that a general network structure is conserved 
in eukaryotes. Indeed, some general principles of genetic 
networks for model organisms have already been shown 
to extend to human genetics, with individual anecdotal 
examples of complex inherited human diseases seem-
ing to act through dense local neighbourhoods of 
interactions that resemble the yeast network topology. 
For example, the Bardet–Beidl syndrome is caused by 
interactive defects in genes involved in the assembly and 
function of the centrosome70.

However, even in experimentally tractable organisms, 
the generation of genetic-interaction data is labour-
intensive, and comprehensive interaction maps are 
some way off for most biological systems. It is therefore 
important to continue efforts to understand the topology 
of networks in simpler systems so that predictions about 
more complex organisms can be attempted. Prediction 
of genetic interactions in yeast following mapping of the 
local topology around gene pairs has provided candidate 
interacting pairs that are enriched for synthetic interac-
tions71. Predictions that come from comparative genom-
ics are also useful; for example, knowledge of interactions 
in both yeast and Drosophila melanogaster has assisted 
in identifying candidate interactions among orthologous 
genes in C. elegans72. Similar approaches should also pro-
vide useful predictions for candidate interactions in less 
accessible systems.

One implication of the high degree of interconnected-
ness of the yeast network is that, assuming that human 
gene networks show the same properties, uncovering the 
genetic basis of disease susceptibility in humans will be a 
huge challenge. Many mutant alleles that have no discern-
able individual effect could contribute to combinatorial 
synthetic effects that cause disease.

Chemical genomics and genetic-interaction networks. To 
help to gain a global understanding of complex biological 
processes, small molecules can serve as a powerful coun-
terpart to gene mutations as rapid and reversible modu-
lators of gene activity. The use of such chemical probes 
on a genome-wide scale is called ‘chemical genomics’ 
and is well suited for use in yeast, in which simple assays 
for cell fitness are available. In principle, deletion of a 
gene that encodes the target of an inhibitory compound 
should cause cellular effects that are similar to inhibition 
of the target by drug treatment. If so, crossing a target 
deletion mutation into the set of ~5,000 viable yeast dele-
tion mutants by SGA, and scoring the resultant double 
mutants for reduced fitness, should generate a set of syn-
thetic-lethal interactions for the gene target that resembles 
the chemical–genetic interaction profile of its inhibitory 
compound (FIG. 6b,c). In a proof-of-principle study73, the 
chemical–genetic profiles of five different compounds 
were found to be highly similar to the genetic-interaction 
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profiles of the target gene or genes in the target pathway. 
In general, a comprehensive compendium of global 
genetic-interaction profiles should allow the targets of 
growth-inhibitory compounds to be identified.

Given that most genes are non-essential, and that 
proper cell function reflects an interconnected robust-
ness, both gene–drug and drug–drug combinations that 
inhibit such cellular systems should be investigated for 
therapeutic intervention. For example, an understanding 
of synthetic-lethal genetic interactions might enable the 
identification of compounds that target specific pathways 
and selectively kill cells with defined mutant genotypes 
in cancer pathways74. In fact, it is well established that 
combinations of molecules can provide highly effective 
drug regimens75,76. A systematic way to identify drugs 
that could have synergistic effects is by selecting pairs 
of drugs affecting targets that are themselves syntheti-
cally lethal. For example, consider two drugs that target 
different essential gene products that show a synthetic 
genetic interaction. For essential genes, a synthetic-lethal 
interaction is often detected by assaying for the lethality 
of a double mutant that carries conditional alleles of the 
essential genes at what is normally a permissive tempera-
ture for each of the single mutants. In this scenario, syn-
thetic drug combinations that target each of the essential 
genes should act synergistically by working together at 
lower minimum inhibitory concentrations (MICs) than 
if used singly. Most importantly, this type of combina-
tion therapy is not limited to essential gene products but, 
rather, encompasses the entire synthetic-lethal genetic-
interaction network. Although there are only 1,000 
essential target genes in S. cerevisiae, we estimate that 
there are ~200,000 synthetic digenic combinations. Thus, 
by using combinations of drugs that cut at the Achilles’ 
heel of cell function, we can find a 200-fold-wider 
repertoire of drugs that work in a way that exploits a 
fundamental weakness of cellular networks.

Conclusion
Grasping an understanding of genetics through pheno-
type can be a slippery task, as phenotypes seldom reflect 
the function of just one gene. In modern genetics, an iso-
genic background allows a focus on the phenotype and 
function of individual genes, and this has been a useful 
initial strategy. However, lurking just below the surface 
is a complexity that we must face. For example, every 

intensively studied organism shows strain-background 
differences that everyone notices and almost everyone 
ignores. Indeed, the genetics we are taught is clearly a 
simplified and limited view of the nature of human vari-
ation. A hard reality, then, is that most phenotypes are 
not caused by alleles of a single gene. Even most pheno-
types that are thought to have their basis in a single gene 
have, on further study, been found to vary under the 
influence of many modifying genes. Quantitative traits 
and most inherited human diseases fall into this abyss of 
complexity, and progress in our understanding of them 
has been difficult and slow.

Here we have examined how geneticists have begun 
to grapple with such genetic complexity. The advent of 
genomics and global gene catalogues, coupled with a 
growing understanding of the properties of biological 
networks, has facilitated the study of genetic interactions 
through double-mutant combinations in systems like 
yeast, for which there is the technology to manipulate 
and analyse large numbers of crosses. The resulting 
genetic networks strongly reflect function, with genetic 
interactions clustering as functional modules in dense 
local neighbourhoods. Furthermore, these networks 
emphasize the deep intrinsic buffering of cellular 
function through redundant or overlapping pathways. 
However, a minority of genes are essential, and these 
define hubs of activity that can in some cases extend 
beyond a given functional module to influence and even 
coordinate multiple cellular processes. It is no wonder, 
given this interactional complexity, that single genes 
rarely specify a phenotype in its entirety. The outlines of 
a yeast genetic network are now apparent, but a compel-
ling case can be made for a deeper and more complete 
exploration of this model system as an exemplar for 
more complex eukaryotes.

As useful as it is in defining general genetic principles, 
yeast only pioneers the way by validating the usefulness 
of such genetic analysis. We anticipate a growing flood of 
genetic-interaction networks from model organisms, 
including chordates such as zebrafish and mice. Such 
studies should progressively sharpen the outlines of our 
own, human genetic-interaction network space, and 
move beyond a comprehension of single-gene effects 
to a deeper understanding of our inheritance, including 
our susceptibility to environmental insult, and the basis 
of collective inherited disorders.
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