Paweł Golik Instytut Genetyki i Biotechnologii Wydział Biologii, Uniwersytet Warszawski

Genetics and genomics in the study of human evolution and prehistory

The presentation will be available

INSTITUTE OF BIOCHEMISTRY AND BIOPHYSICS POLISH ACADEMY OF SCIENCES

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

How do we know about the past?

- Fossil remains paleontology
- Most of evolutionary history
- Fragmentary, require favorable conditions to be preserved

EVOLUTION THE HUMAN STORY

Sahelanthropus Tchaedensis 7 - 6 mya

Australopithecus Afarensis 3,7 - 3 mya

Homo Ergaster 1,9 - 1,5 mya

Homo Floresiensis 95,000 - 12,000 ya

Homo Georgicus 1,8 mya

Homo Heidelbergensis 600,000 - 200,000 ya

Africanus 3,3 - 2,1 mya

Homo Habilis 2,4 - 1,6 mya

1,8 mya - 30,000 ya

Homo Neanderthalensis 350,000 - 28,000 ya

Homo Sapiens 200,000 ya - Present (Human)

Contraction of the

DNA as the source of information

- Comparative analysis of contemporary • sequences
 - phylogenetic inference
 - population analysis (admixture, coalescence)

Pavel Duda^{1,2} & Jan Zrzavý¹ SCIENTIFIC REPORTS | 6:29890 | DOI: 10.1038/srep29890

DNA as the source of information

- Ancient DNA (aDNA) •
 - partial and complete sequences
 - limits in hominids: ~400 kYA (thousands) of years) (partial, mtDNA)
 - oldest complete hominin genome ~ 120 kYA (neanderthal)
 - · oldest H. sapiens genome 45 kYA (Ust'-Ishim, Siberia)
 - oldest complete genome > 700 kYA years (a horse species) - preserved in permafrost

DNA pulled from this Neanderthal jawbone found in Belgium revealed fresh details about when these ancient human relatives moved across Europe and into Asia.

PHOTOGRAPH BY J. ELOY, AWEM, ARCHÉOLOGIE ANDENNAISE

Bence Viola, MPI EVA, nature.com

aDNA

Hofreiter et al. 2014, Bioessays 36

Ancestors?

Multiple hominid fossils found. The relations are uncertain: ancestors or cousins?

The tree

- Evolution is not linear
- The status of many fossils often unclear cannot be assigned to a particular branch
- There is no "missing link" current paleontology has many fossils of transitory forms from ape-like to human-like

WHAT CREATIONISTS THINK EVOLUTION MEANS

WHAT IT ACTUALLY MEANS

We are animals!

Linnaeus, 1735 Systema Naturae

Taxonomy

- **Hominids** the family *Hominidae*:
 - currently: humans, chimpanzees (and bonobos), gorillas, orangutans
 - oldest traces: ~14-18 MYA (milion years ago) branching from the gibbon lineage
 - subfamily Homininae african hominids (minus orangutans)
- **Hominins** humans and human ancestors, after separation from the chimpanzee • lineage
 - In some taxonomies *Hominini* includes humans and chimpanzees

The last common ancestor of humans and chimpanzees

- 6 8 MYA fossil record
 - Assignment of the fossils to a lineage often difficult
- 6 7 MYA sequence analysis
- As distant from modern humans, as from modern chimpanzees!

Depends on the estimated mutation rates, underestimated until recently

Sahelanthropus tchadensis -Toumaï

- Skull fragment
- Dating: ~ 6-7 MYA
- Close to a last common ancestor (LCA) of humans and chimps?
- Around the same time as the LCA
- Some traits more chimp-like (cranial proportions), some more hominin-like

Orrorin tugenensis

- Discovered in 2001 ("the millenium man")
- ~5-6 MYA
- Was it a real hominin?
 - Some traits even more "human like" than in *Australopithecus*
 - still could be a parallel lineage
- Partially bipedal
- Habitat forests and forest border

Ardipithecus ramidus - Ardi

- Discovered 1994, published 2009
- 4.4 MYA
- Oldest true hominin
- Partially bipedal
- Ancestor of Australopithecus (?)

Ardipithecus ramidus - Ardi

Ardipithecus et al.

www.sciencemag.org SCIENCE VOL 326 2 OCTOBER 2009 Published by AAAS

Australopithecus

- Many differen species
 - gracile
 - massive (Paranthropus)
- 4 2 MYA

Australopithecus sediba - a late australopithecus

SIMILARITIES WITH AUSTRALOPITHS

- Small brain size
- 2 Long, high cheekbones
- 3 Primitive molar cusps
- 4 Small body size
- 5 Long upper limbs
- 6 Primitive heel bone

SIMILARITIES WITH HOMO

- Front of brain reorganized
- Projecting nose 8
- 9 Smaller teeth and chewing muscles
- 10 Hips less flared, similar to humans
- 11 Longer legs
- 12 Hand with precision grip

Opisany w 2010, Wiek: ~ 2 mln. lat

The genus Homo

- Origin ~2.3 MY
- The Olduvai culture, stone tools (1.9 MYA) Homo habilis
- Homo erectus, H. ergaster
 ("pithecantropus") 1.5 MYA, extinct only ~ 70 kYA (thousand years ago)
 - First to leave Africa
 - Used fire
 - Hunters (weapons javelins)
 - Social groups
 - Only one species survived: *H. sapiens*

Olduvai tools British Museum

Homo - how many species

- rudolfensis together
- Were they simply different morphs of *H. erectus?*
- No genetic data (too old)

• Fossils found in Georgia (Dmanisi) (~1.8 MYA) H. habilis, H. ergaster and H.

Homo naledi

- Described in 2015, Dinaledi Cave, South Africa
- Likely a burial site
- At first believed to be old, but recent dating suggests not older than 600-300 kYA
- No DNA
- Did it mix with *H. sapiens?*

We are all African

Australopithecus afarensis (Lucy) oldest Homo (a jawbone ~ 2.3 MYA)

Australopithecus, Homo habilis, H. erectus, H. sapiens

Australopithecus africanus A. sediba

The first *H. sapiens*

- About 500-400 kYA divergence of human and neanderthal lineages
- ~ 190 kYA anatomically modern H. sapiens - Ethiopia
- ~ 300 kYA oldest H. sapiens (anatomically) primitive) - Morocco.
- *H. sapiens* had a wide distribution in Africa! •

New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens

Jean-Jacques Hublin^{1,2}, Abdelouahed Ben-Ncer³, Shara E. Bailey⁴, Sarah E. Freidline¹, Simon Neubauer¹, Matthew M. Skinner⁵, Inga Bergmann¹, Adeline Le Cabec¹, Stefano Benazzi⁶, Katerina Harvati⁷ & Philipp Gunz¹

Figure 1 | Facial reconstruction of Irhoud 10. a, b, Frontal (a) and basal (b) views. This superimposition of Irhoud 10 (beige) and Irhoud 1 (light blue) represents one possible alignment of the facial bones of Irhoud 10.

The first migrations ~2 MYA

Ancestors or cousins?

Homo Erectus 1,8 mya - 30,000 ya

Homo Antecessor 1,2 mya - 500,000 ya

Homo Neanderthalensis 350,000 - 28,000 ya

Homo Sapiens 200,000 ya - Present (Human)

The questions

- Who were the ancestors of modern human populations
- Do we come from the first hominids that left Africa? •
 - Eg. *H. antecessor* 800 kYA in western Europe (Spain)

The multiregional model

- different continents
- Constant genetic flow between the regions

The human ancestors that left Africa more than 1.5 MYA evolved separately on

The first genetic studies - mtDNA

- A small DNA molecule (13 genes, 16.5kb)
- Maternally inherited easy to follow evolutionary changes
 - Variants evolve linked together as haplotypes that form larger haplogroups
 - No recombination in every generation
- Multicopy easy to isolate

The mtDNA haplogroup tree

The Y chromosome haplogroup tree - another uniparental genome segment

Jobling & Tyler-Smith (2003) Nature Rev. Genet. 4, 598-612

The OoA (OAR) model

- "Out of Africa (replacement)"
- and started migrating ~100 kYA to other continent
- That was already modern *H. sapiens*
- The new migrants replaced the previous hominins
- migrants

Modern humans descend from a population that ~ 200 kYA still lived in Africa,

All modern humans come from the last migration wave, not from the earlier

What is OAR about

- Not the African origin •
 - all models, based on fossil evidence place human origins in Africa
- We don't come from a single woman ("the mitochondrial Eve")
 - we come from one population, mtDNA is not the only lineage, requires unbroken female-tofemale lineage
 - modern genomic techniques estimate the effective size of this population at $\sim 30\ 000$ individuals
- The ancestral population of modern humans lived in Africa recently (~200-300 kYA) they were already modern *H. sapiens*
 - Earlier migrating hominins were not our ancestors

out of Africa. A northern route would have taken our ancestors from their base in eastern sub-Saharan Africa across the Sahara desert, then through Sinai and into the Levant. An alternative southern route may have charted a path from Djibouti or Eritrea in the Horn of Africa across the Bab el-Mandeb strait and into Yemen and around the Arabian peninsula. The plausibility of these two routes as gateways out of Africa has been studied as part of the UK's Natural Environment Research Council's

busiest shipping lanes, was then a narrow, shallow channel.

huge lakes existed in both Chad and Libya, which would have

The view based on mtDNA and chr Y, ca. 2000

- The story of out of Africa migrations
- Branching into separate lineages

This is licensed by a Creative Commons Attribution 3.0 license.

mtDNA and neanderthals

- The neanderthal mtDNA are outside of the human clade
 - Lineages diverged before humans left Africa
- Not our ancestors

HVR 1
The prehistory of Europe

- First humans arrived ~ 45-50 kYA from Africa via the basal Eurasian population
 - hunter-gatherers, Cro-Magnon humans
- Glacial periods migrations to souther refugia (18-10 kYA)
- The neolithic farmer migration from the Middle East (10 7 kYA)
 - how did it spread replacement or cultural diffusion?
- Later migrations
 - indoeuropean groups ~5-3 kYA

The only descendants of first Europeans?

- The only traces of pre-neolithic mtDNAs in Basques
- The Basque language an isolate, not indoeuropean

Cell

Report

The Basque Paradigm: Genetic Evidence of a Maternal Continuity in the Franco-Cantabrian Region since Pre-Neolithic Times

Doron M. Behar^{1, 2}, Christine Harmant^{1, 3}, Jeremy Manry^{1, 3}, Mannis van Oven⁴, Wolfgang Haak⁵, Begoña Martinez-Cruz⁶, Jasone Salaberria⁷, Bernard Oyharçabal⁷, Frédéric Bauduer⁸, David Comas⁶, Lluis Quintana-Murci^{1, 3}, ⁴, ^{Sa}, The Genographic Consortium 9

mtDNA and chr. Y - the whole story?

- Using uniparentally inherited genome segments makes analysis simple
- But a lot of information is lost

The genome era

- the whole genome diversity of modern humans
- Advances in aDNA whole-genome data on samples up to 100 kYA
- Lots of new data, but analysis is challenging

In the 21st century NGS genomic sequencing allowed to gather information on

Analysis methods

- Admixture analysis: presents the • contribution of *K* source populations to each individual in the sample (programs: ADMIXTURE, STRUCTURE)
- Clustering methods: PCA and MDS •
- Data whole genome sequencing or SNP • arrays

		ID	Location	Latitude	Longitude	Ethnicity	Language	size	K	= 1
	100	JP-RK	Japan	26.5	127.9	Ryukyuan	Okinawan	49		
Altaic	100	JP-ML	Japan	35.7	139.8	Japanese	Japanese	71		
Sino-Tibetan	100	JPT	Japan	35.7	139.8	Japanese	Japanese	44		
Hmong-Mien	100	KR-KR	Korea	36.9	127.5	Korean	Korean	90		
Austro-Asiatic	100	CHB	China	40.0	116.4	Han	Chinese	45		
Austronesian	100	TW-HA	Taiwan	25.0	121.5	Han	MinNan	48		
Papuan	100	TW-HB	Taiwan	25.0	121.5	Han	Hakka	32		
Dravidian	100	SG-CH	Singapore	1.4	103.8	Han	MinNan	30		
Indo-European	100	CN-GA	China	23.3	113.5	Han	Cantonese	30	and the second second	_
Niger-Congo	100	CN-HM	China	26.3	108.7	Hmong	Hmong	26		
	100	TH-HM	Thailand	18.6	98.1	Hmong	Hmong	20		
		CN-CC	China	20.0	100.2	Tao	Zhuang	26		
		CN-JI	China	18.9	109.8	Jiamao	Jiamao	31		
	100	TH-TL	Thailand	19.2	100.9	Tai Lue	Lue	20		
1	100 62	TH-TY	Thailand	18.4	98.9	Tai Yong	Tai Yong	18		
		TH-TK	Thailand	18.6	98.9	Tai Kern	Tai Kern	18		
		TH-TU	Thailand	19.0	99.0	Tai Yuan	Tai Yuan	20		
7	4 69	TH-MA	Thailand	18.7	100.5	Mlabri	Mlabri	18		
	69	TH-IN	Thailand	19.1	100.9	Bland	Bland	18		
	69	CN-WA	China	22.8	100.2	Wa	Wa	56		
		TH-LW	Thailand	18.4	98.1	Lawa	Lawa	19		
1.0	100	TH-KA	Thailand	18.0	98.4	Karen	Karen	20		
	14	CN-JN	China	22.0	101.0	Jinuo	Jinuo	29		
	93	TH-PL	Thailand	19.9	99.2	Palong	Palong	18		
1	100	AX-ME	Pacific	-5.8	155.1	Melanesian	Nasioi	5		
1	100	ID-AL	Indonesia	-8.3	124.7	Alorese	Alor	19		
1	100	ID-LA	Indonesia	-8.3	123.0	Lamaholot	Lamaholot	20		
1	86	ID-SO	Indonesia	-8.6	120.1	Manggarai	Manggarai	19		
	100	ID-RA	Indonesia	-8.7	120.5	Manggarai	Manggarai	17		
		ID-SB	Indonesia	-9.8	120.0	Kambera	Kambera	20		
	81 100	PI-AG	Philippines	13.7	123.3	Negrito	Agta	8		
1	52	PI-AE	Philippines	14.9	120.2	Negrito	Aeta	8		
100		PI-IR	Philippines	13.0	121.1	Negrito	Irava	9		-
	100	PI-AT	Philippines	11.9	122.0	Negrito	Ati	23		
	100 100	AX-AM	Taiwan	23.7	121.4	Ami	Ami	10		
	100	AX-AT	Taiwan	24.6	121.4	Atayal	Atayal	10	1	
1	1 75	PI-UB	Philippines	17.2	121.9	Urban	llocano	20		
	400 64	PI-UN	Philippines	14.6	121.0	Urban	Tagalog	19		
	69	PI-UI PLMA	Philippines	6.9	122.1	Urban	Visaya	19		
		ID-MT	Indonesia	-0.3	98.4	Mentawai	Mentawai	15		
	60 77	ID-TR	Indonesia	-4.7	119.7	Toraja	Toraja	20		
		ID-ML	Indonesia	-3.0	104.7	Malay	Malay	12		
		ID-KR	Indonesia	1.5	100.0	Batak Karo	Batak Karo	17		
100	100 100	ID-TB	Indonesia	2.3	99.1	Batak	Batak Toba	20		
	60	ID-DY	Indonesia	1.2	116.7	Dayak	Benuak	12		
	100	SG-MY	Singapore	1.0	102.2	Malay	Malay	30		
		MY-KN	Malaysia	5.3	102.0	Malay	Malay	18		
	71	ID-JA	Indonesia	-6.2	106.7	Javanese	Javanese	34		
100	76 78	ID-JV	Indonesia	-7.3	110.4	Javanese	Javanese	19		
	14/14	ID-SU	Indonesia	-6.2	106.7	Sundanese	Sunda	25		
		MY-BD	Malaysia	1.4	110.2	Bidayuh	Jagoi	50		
100	76	MY-IM MY-IH	Malaysia	2.9 5.4	102.1	Proto-Malay	Temuan	49		
	100	MY-KS	Malaysia	5.7	100.9	Negrito	Kensiu	30	1	
100		TH-MO	Thailand	18.5	98.9	Mon	Mon	19		
		IN-NI	India	30.4	79.2	Tharu	Pahari	20		
		IN-TB	India	34.7	76.5	Ladakhi	Spiti	23		
		CN-UG	China	37.1	86.6	Uyghur	Uyghur	26		-
100		IN-DR	India	15.3	103.9	upper-caste	Tamil	24		
	52	IN-WI	India	26.7	74.0	Bhil	Bhili	25		
	52	IN-EL	India	23.0	88.2	Upper-caste	Bengali	16		
100	1 100	IN-SP	India	29.1	76.5	Upper-caste	Hindi	23		
	X	IN-WL	India	19.7	75.9	Upper-caste	Marathi	14		
100	52	IN-NL	India	26.8	81.4	Upper-caste	Hindi	15		
		IN-IL	India	26.7	74.0	Upper-caste	Hindi	15		
		YRI	Nigeria	74	-0.1	Yoruba	Yoruba	60		
		MRCA	nigena	1.4	0.0	Tortund	Totuba	00		

Mapping Human Genetic Diversity in Asia

The HUGO Pan-Asian SNP Consortium

Ancient genomes

- First complete ancient human genome:
 2010
- Currently hundreds of sequences from humans and other hominins

ANCIENT GENOMES

More than 1,300 genome sequences have been produced from the remains of ancient humans, sometimes challenging the historical narratives derived from artefacts.

Europe
 North
 South
 Oceania
 Africa
 Asia
 America
 America

In the largest ancient-DNA study to date, scientists sequenced the remains of 400 Neolithic, Copper-Age and Bronze-Age Europeans, including 226 associated with Bell Beaker artefacts.

A 4,500-year-old skeleton from a cave in Ethiopia provided the first ancient-human genome sequence from Africa, providing context on movements back from Eurasia. Scientists expect many more examples from Africa this year.

000000

0000000000

0000000000

The european mosaic

I Lazaridis et al. Nature 513, 409-413 (2014) doi:10.1038/nature13673

The european mosaic

- 2015: at least three source populations for modern European genomes
 - WHG western hunter-gatherers
 - the first to arrive from Africa, dark skinned, Cro-Magnon man
 - through Anatolia
 - fair skin
 - modern Siberia and Native Americans, Mal'ta-Buret' culture

EEF - early eastern farmers, neolithic farmer migration from the fertile crescent

• ANE - ancient north eurasia (central Siberia), also contributed to genomes in

В

European prehistory, current view

European prehistory, current VİeW

- In Europe: palaeolithic WHG + EEF from Anatolia gave European neolithic population
- In the steppes and Caucasus eurasian • hunter-gatherers mixed with ANE to give EHG (eastern hunter-gatherers)
- EHG people mixed with EEF from the • Caucasus and Iran to give the steppe population (Yamnaya)

 The steppe people invaded Europe mixing (or displacing) neolithic Europeans

Current Opinion in Genetics & Development

Ötzi - a neolithic european

- Body found in the glacier in Austria (South Tirol)
- ~5.3 kYA
- Had WHG and EEF ancestry, but no ANE (which came with the steppe migration)

A hunter-gatherer woman, Sweden, ~7 kYA

in what is now southern Sweden 7,000 years ago.

PHOTOGRAPH BY GERT GERMERAAD, TRELLEBORGS MUSEUM

Researchers used skeletal remains and ancient DNA to reconstruct the burial of a woman who lived

A neolithic farmer, Greece ~ 9 kYA

ago.

reconstructor Oscar Nilsson, who recreated this face of a teenager who lived in Greece 9,000 years

The bell beaker invasion

- Bell beaker culture spread westwards betwee 2750 and 2500 BCE (4.7-4.5 kYA)
- Analysis of 400 human aDNA samples, including 226 from the bell beaker culture (02.2018)

doi:10.1038/nature25738

The Beaker phenomenon and the genomic transformation of northwest Europe

Ashmolean Museum/Univ. Oxford/Bridgeman

The bell beaker story

- In central and eastern Europe the bell beaker people mixed with the previous populations, replacing some of their genes
- In southern Europe the genetic composition of the inhabitants remained unchanged culture spread without demographic replacement

ARTICLE

а

doi:10.1038/nature25738

The Beaker phenomenon and the genomic transformation of northwest Europe

The bell beaker invasion in British Isles

 In the British Isles the bell beaker people completely replaced the earlier neolithic inhabitants with genomes similar to the continental peoples

ARTICLE

The Beaker phenomenon and the genomic transformation of northwest Europe

doi:10.1038/nature25738

A beaker culture man, England, ~4.4 kYA

Ditchling Road Man, named for the road-widening project that revealed his remains in 1921, was part of the first wave of farmers from continental Europe that arrived in Britain with their distinctive Beaker pottery around 2,400 B.C. His remains show that he suffered several periods of malnutrition while growing up, which may have slightly stunted his growth. Ditchling Road Man died between the ages of 25 and 35 and was buried with a Beaker vessel by his feet and a small number of snail shells next to his mouth.

The neanderthals

- Earliest neanderthal fossils found in Asia,
 ~ 400 kYA
- Lived in Europe until ~30 kYA
- First humans came to Europe 50-45 kYA
- Neanderthals and humans lived in Europe together. Did they mix?
- mtDNA did not indicate any admixture

A reconstruction of a Neanderthal is standing a the Neandertal Museum. The Neandertal Museum, which is located between Mettmann and Dusseldorf, North Rhine-Westphalia, contains the pre- and early history of human beings and of the Neanderthals, who were named after the place of discovery of the fossil Neandertal 1. Picture from 23 August 2013.

A neanderthal woman, England, ~40 kYA

- Note the fair skin and reddish hair
- All *H. sapiens* at that time had black skin and hair
- Skin and hair color can be deduced from genomic sequence (analysis of ~12-20 loci)

Artifacts from southern England show that both Neanderthals, such as this woman, and modern humans were residents of what is now southern England some 40,000 years ago.

The neanderthal genome

- ~ 10⁶ bp of nuclear DNA (2006)
- 60% of genome (2010)
- Currently up to 99% of genome with 50x coverage from multiple individuals (starting material ~40 mg of bone!)

Svante Pääbo

Neanderthal Man In Search of Lost Genomes

Svante Pääbo

NEANDERTALCZYK W POSZUKIWANIU ZAGINIONYCH GENOMÓW

NA ŚCIEŻRACH N A U K I

Restults of the nDNA analysis

- The lineages were completely separated long before human out of Africa migration
- Traces of mixing between neanderthals and Homo sapiens

Evolutionary lineage of human and Neanderthal reference sequences

Evolutionary lineage of ancestral human and Neanderthal populations

Human-neanderthal crosses

- Traces of neanderthal alleles in all populations, except Africa
- ~ 2-4% of Eurasian genomes
 - genome reconstructed
- Eurasians mixed with neanderthals after leaving Africa
- on chromosome X) - nascent genetic barrier

not the same 4% in different individuals, ~40% of introgressing population

The admixed DNA amount decreased from the palaeolithic - negative selection

Some regions in human genome devoid of neanderthal DNA - incompatibility (eg.

Can different species interbreed

- Yes (the definition is not complete)
- Example brown and polar bears (distance similar to human-neanderthal

A hybrid of brown and polar bear Rothschild Museum, Tring © wikipedia

Neanderthals and us

- Humans and neanderthals continued interbreeding in Europe ~ 40 kYA - the second wave of admixture
- In modern populations we see traces of the first admixture wave, but not the second
- Neanderthal genomes also show traces of human admixture

DNA taken from a 40,000-year-old modern human jawbone from the cave Pestera cu Oase in Romania reveals that this man had a Neandertal ancestor as recently as four to six generations back. IMAGE, SVANTE PAABO, MAX PLANCK INSTITUTE FOR EVOLUTIONARY ANTHROPOLOGY

Not only neanderthals

- Bones from the Denisova Cave (Altai mountains)
- Contemporary with neanderthals, probably a sister species
- Traces of intermixing with humans in southeast Asia and Oceania

What happened in the Denisova Cave

 A complete Denisovan genome (2013) suggests gene flow between *H. sapiens, H. neanderthalensis* and probably a third, unidentified hominid

Eurasia, 40 000 kYA

The genome of the offspring of a Neanderthal mother and a Denisovan father

Viviane Slon^{1,7}*, Fabrizio Mafessoni^{1,7}, Benjamin Vernot^{1,7}, Cesare de Filippo¹, Steffi Grote¹, Bence Viola^{2,3}, Mateja Hajdinjak¹, Stéphane Peyrégne¹, Sarah Nagel¹, Samantha Brown⁴, Katerina Douka^{4,5}, Tom Higham⁵, Maxim B. Kozlikin³, Michael V. Shunkov^{3,6}, Anatoly P. Derevianko³, Janet Kelso¹, Matthias Meyer¹, Kay Prüfer¹ & Svante Pääbo^{1*}

Neandertalczycy

Denisowianie

H. sapiens

The admixture

- N.I.: Introgressing Neanderthal population
- P.D.I.: Papuan-Introgressing Denisovan population
- A.D.I.: Asian- Introgressing Denisovan population

The adaptations from admixture

- Adaptation to altitude in Tibetans allele of the *EPAS1* gene (in the hypoxia response) pathway)
- This *EPAS1* haplotype is frequent in • Tibetans, but absent in their close relatives - Han Chinese
- This haplotype is found in the Denisovan genome

Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA

Emilia Huerta-Sánchez^{1,2,3}*, Xin Jin^{1,4}*, Asan^{1,5,6}*, Zhuoma Bianba⁷*, Benjamin M. Peter², Nicolas Vinckenbosch², Yu Liang^{1,5,6}, Xin Yi^{1,5,6}, Mingze He^{1,8}, Mehmet Somel⁹, Peixiang Ni¹, Bo Wang¹, Xiaohua Ou¹, Huasang¹, Jiangbai Luosang¹, Zha Xi Ping Cuo¹⁰, Kui Li¹¹, Guoyi Gao¹², Ye Yin¹, Wei Wang¹, Xiuqing Zhang^{1,13,14}, Xun Xu¹, Huanming Yang^{1,15,16}, Yingrui Li¹, Jian Wang^{1,16}, Jun Wang^{1,15,17,18,19} & Rasmus Nielsen^{1,2,20,21}

Figure 2 | Haplotype pattern in a region defined by SNPs that are at high frequency in Tibetans and at low frequency in Han Chinese. Each column is a polymorphic genomic location (95 in total), each row is a phased haplotype (80 Han and 80 Tibetan haplotypes), and the coloured column on the left denotes the population identity of the individuals. Haplotypes of the Denisovan individual are shown in the top two rows (green). The black cells represent the presence of the derived allele and the grey space represents the presence of the ancestral allele (see Methods). The first and last columns correspond to the

What did neanderthals leave us?

- The neanderthal population was diverse with regard to skin color, eye and hair color, etc.
- Some (but not all) of these alleles may contribute to human variation
- Immune system alleles adaptation to non-African pathogens, but also autoimmune disease
- Chronotype variation, circadian rhythms, mood. Could be linked to depression
- Neanderthals were longer adapting to lower sun exposure

The Contribution of Neanderthals to Phenotypic Variation in Modern Humans

Michael Dannemann¹ and Janet Kelso^{1,*}

The American Journal of Human Genetics 101, 578–589, October 5, 2017

The neanderthal and denisovian contribution

		С
•	Neanderthal admixture	60
		40
		20
		o tride
		-20 E
		-40
		-60
		d
•	Denisovian admixture	60
		40
		20
		0 litud
		20- Et
		-40

How many human migrations

- *H. sapiens* remains ~80-100 kYA found in China - before the migrations
- The first wave ~120 kYA to Australia and Oceania
- The second wave ~ 80 kYA Eurasia
- But the modern genomes indicate a single • migration wave?

these two routes as gateways out of Africa has been studied as part of the UK's Natural Environment Research Council's

strait, now around 30 kilometres wide and one of the world's busiest shipping lanes, was then a narrow, shallow channel.

conditions and a humid climate. During the longer wetter period huge lakes existed in both Chad and Libya, which would have

exodus. Moreover, accumulating evidence is pointing to the southern route as the most likely jumping-off point.

One of the models

- The first wave (xOoA): reached south-east Asia, but later went extinct. Mixed with Denisovians and neanderthals
- The second wave (OoA) the ancestors of modern non-African populations
- xOoA and OoA mixed before xOoA people disappeared
- Through xOoA the denisovian and neanderthal admixture is higher in some populations in south-east Asia

Tyler-Smith + et al.

Nature (2016) | doi:10.1038/nature19792

"Out of Africa"? Not really.

- Most earlier studies underestimated the diversity in Africa
- *H. sapiens* was widespread in Africa when anatomically modern humans evolved
- aDNA studies in Africa only beginning (2017-18)

Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago

Carina M. Schlebusch, Helena Malmström, Torsten Günther, Per Sjödin, Alexandra Coutinho, Hanna Edlund, Arielle R. Munters, Mário Vicente, Maryna Steyn, Himla Soodyall, Marlize Lombard and Mattias Jakobsson

The diversity of modern humans is low

Fig. 11 DNA sequence diversity within humans and great apes. Values are based on the number of variable positions within each species taking the number of sequences determined into account (Watterson's diversity estimator, θ_w).

Kassemann & Pääbo, 2002, J. Int. Med. 251:1-18

Diversity, equality, racism

- Genetic diversity among humans is a fact (even though it is low)
- It does not correspond to traditional notion of continental races
 - it can show history of particular ethnic groups
 - most, if not all populations show traces of mixing and migration
- Equality is about embracing diversity, not negating its existence

1973

Taxonomy

- Taxonomically we are all African
- Greates diversity within Africa ٠
- Two Africans can differ more than one of them from a non-African

Diversity and "races"

- There are genetic markers that can distinguish ethnic groups
 - they form gradients, not distinct clusters
 - they do not correspond to traditional races
 - different genes and analyses tell different stories
- Division of this continuous diversity into separate groups is a cultural phenomenon
 - two individuals from the same group can be more different, than two individuals from different groups

Pure identity?

- Closely related groups are indistinguishable •
- But that's where the conflict often occurs

ll a ll	Mate.	٦IL	a ta a a		T.a.	ıl.	4.4	Л.	. An	L. L	. 1					1	1		- C	Q. P	È.О		Mary.
j.,h	5024	սվ		/¶}})	- -									u _d		5	٦.	L.		h			in the second
		Ľ	b lir		•	4 T	.	ы,			1								"1		Դ		
					t.	J ⁱ				uul		L .											
				L I	.	ł			4r	ւս Եեր		r -			ida Ma	l.		ŀ	66.) 16.		tu M		L.J
ope French	Hungarians	Spaniards	French Basques	Sardinians	North Italians	Tuscans	Italians Abruzzo	Sicilians	Cypriots	Greeks	Macedonians	Kosovars	Montenegrins	Serbians	Bosniacs	Bosnian Croats	Croatians	Bosnian Serbs	Bulgarians	Romanians	Gagauzes	Poles	Ukrainians
West Eur				South	Ει	uro	ope	e			١	Ne	este	ern	Bal	ka	n		Eactorn B		E	Eas	st Eu

Standing at the Gateway to Europe - The Genetic Structure of Western Balkan Populations Based on Autosomal and Haploid Markers

Lejla Kovacevic^{1,2,3}*, Kristiina Tambets¹, Anne-Mai Ilumäe¹, Alena Kushniarevich¹, Bayazit Yunusbayev^{1,3}, Anu Solnik¹, Tamer Bego⁴, Dragan Primorac⁵, Vedrana Skaro⁶, Andreja Leskovac⁷, Zlatko Jakovski⁸, Katja Drobnic⁹, Helle-Viivi Tolk¹, Sandra Kovacevic¹⁰, Pavao Rudan¹¹, Ene Metspalu¹, Damir Marjanovic^{2,5}

Additional reading

WHO WE ARE HOW WE GOT HERE **Ancient DNA**

and the New Science of the Human Past

KIM JESTESMY, SKĄD PRZYSZLIŚMY... **DAVID REICH**

