ncRNAs czyli RNA są różniste, kuliste, w kształcie grzyba i cygara

- Czy może nam pani powiedzieć, na terenie jakiego zakładu się obecnie znajdujemy?
- Tego ni mogę powiedzieć, bo to jest tajemnica państwowa! Mogę tylko powiedzieć, że mam 5 złotych od bombki.
- Czy pani jeszcze może nam powiedzieć, jakie bombki produkujecie?
- Panie, różne, różniste. Tu się robi tak: kuliste, w kształcie grzyba i cygara.
- Cały czas mowa o o bombkach choinkowych.
- Też. A, a wie pan, jaki mamy asortyment? Od A do N...

ncRNA

Housekeeping

- constitutively expressed
- required for normal function and cell viability
 - **tRNA** and **rRNA** translation
 - **snRNA** splicesosome components, pre-mRNA splicing
 - **snoRNA** rRNA processing and modification, scaRNA (CB specific)
 - RNA components of RNase P and RNase MRP endonucleases: tRNA and rRNA processing
 - Signal Recognition Particle **SRP RNA** protein secretion to ER
 - **tmRNA** tRNA-mRNA hybrid- targeting nascent proteins for degradation
 - **gRNA** guide RNA in RNA editing
 - **telomerase RNA** synthesis of telomers

Regulatory

- expressed temporarily (development, response to stimuli)
- affect gene expression at the level of transcription or translation
 - sRNAs: siRNA (exo-siRNAs and endo-siRNAs; ta-siRNA; nat-siRNA; IsiRNAs); miRNA; piRNA – act in TGS or PTGS
 - IncRNAs much less known, usually act in TGS (chromatin level)

LONG ncRNAs

The diversity of IncRNAs

lincRNAs - long inergenic transcipts NAT - natural antisense transcripts snoRNA-IncRNA (excised from introns) circRNAs - circular RNAs SPA RNAs - snoRNA 5' ended polyA RNAs (from readthrough RNAs)

FUNCTIONS of LONG ncRNAs

Chen and Carmichael, WIREsRNA, 2010

Heat shock

FUNCTIONS of LONG ncRNAs

CYTPLASMIC FUNCTIONS of LONG ncRNAs

Noh et al, WIREsRNA, 2018

IncRNAs and regulation of gene expression

MECHANISM of ACTION of LONG ncRNAs

ncRNAs recruit chromatin modifying complex to genes, resulting in histone modifications (H3meK27) and heterochromatin formation

ncRNAs act as repressors or enhancers of transcription via binding to protein factors or DNA;
may act as decoys to titrate trx factors away from genes ncRNAs mask 5' splice site resulting in intron retention, recognition of IRE and translation

MECHANISM of ACTION of LONG ncRNAs

Cotranscriptional recruitment of chromatin-modifying factors.

Nucleation of chromatin.

Dynamic assembly of nuclear structures: paraspecles, nuclear bodies

Formation of higher-order chromatin loops

- **GUIDES** (chromatin modifyiers)
- TRX FACTORS
- SCAFFOLDS (RNP structures)

Nagano and Fraser, Cell, 2011

NEAT and MALAT1

Regulate the phosphorylation status of splicing factors

Bind to common and distinct actively transcribed loci across the genome

LncRNA and splicing regulation

IncRNAs act as splicing factor hijackers

INVISIBLE RNAs

Cell, Vol. 121, 725-737, June 3, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.cell.2005.04.030

Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase

Françoise Wyers,^{4,5,7} Mathieu Rougemaille,^{5,7} Gwenaël Badis,¹ Jean-Claude Rousselle,² Marie-Elisabeth Dufour,⁴ Jocelyne Boulay,⁵ Béatrice Régnault,³ Frédéric Devaux,⁶ Abdelkader Namane,² Bertrand Séraphin,^{2,5,*} Domenico Libri,^{5,*} and Alain Jacquier^{1,*}

3262-3267 | PNAS | Rebruary 28, 2006 | vol. 103 | no. 9

Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in *Saccharomyces cerevisiae*

Carrie Anne Davis and Manuel Ares, Jr.*

Vol 457 19 February 2009 doi:10.1038/nature07728

Bidirectional promoters generate pervasive transcription in yeast

Zhenyu Xu¹*, Wu Wei¹*, Julien Gagneur¹, Fabiana Perocchi¹, Sandra Clauder-Münster¹, Jurgi Camblong², Elisa Guffanti³, Françoise Stutz³, Wolfgang Huber⁴ & Lars M. Steinmetz¹

Vol 457 19 February 2009 doi:10.1038/nature07747

Widespread bidirectional promoters are the major source of cryptic transcripts in yeast

Helen Neil¹, Christophe Malabat¹, Yves d'Aubenton-Carafa², Zhenyu Xu³, Lars M. Steinmetz³ & Alain Jacquier¹

INVISIBLE RNAs

SCIENCE VOL 322 19 DECEMBER 2008 RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters

Pascal Preker,¹ Jesper Nielsen,² Susanne Kammler,¹* Søren Lykke-Andersen,¹ Marianne S. Christensen,¹ Christophe K. Mapendano,¹ Mikkel H. Schierup,² Torben Heick Jensen¹†

SCIENCE VOL 322 19 DECEMBER 2008 Divergent Transcription from Active Promoters

Amy C. Seila,¹* J. Mauro Calabrese,^{1,2}*† Stuart S. Levine,³ Gene W. Yeo,⁴‡ Peter B. Rahl,³ Ryan A. Flynn,¹ Richard A. Young,^{2,3} Phillip A. Sharp^{1,2}§

Vol 457 19 February 2009 doi:10.1038/nature07759

Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs

Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project* **Cold Spring Harbor Laboratory** Katalin Fejes-Toth^{1,2}*, Vihra Sotirova^{1,2}, Ravi Sachidanandam¹†, Gordon Assaf^{1,2}, Gregory J. Hannon^{1,2}; **Affymetrix** Philipp Kapranov³*, Sylvain Foissac³, Aarron T. Willingham³, Radha Duttagupta³, Erica Dumais³ & Thomas R. Gingeras^{1,3}

Genome-Wide High-Resolution Mapping of Exosome Substrates Reveals Hidden Features in the Arabidopsis Transcriptome

Julia A. Chekanova,^{1,2,8,13} Brian D. Gregory,^{3,4,8} Sergei V. Reverdatto,² Huaming Chen,⁴ Ravi Kumar,¹ Tanya Hooker,¹ Junshi Yazaki,^{3,4} Pinghua Li,^{2,10} Nikolai Skiba,^{5,9} Qian Peng,^{3,6} Jose Alonso,^{3,11} Vladimir Brukhin,^{7,12} Ueli Grossniklaus,⁷ Joseph R. Ecker,^{3,4,*} and Dmitry A. Belostotsky^{1,2,13,*}

PERVASIVE TRANSCRIPTION OF THE GENOME

All possible types of RNAs, detected by tiling microarrays and "deep sequencing", SAGE and GRO, accompany major coding transcripts

(1) protein-coding mRNA; (2) PROMPT - promoter upstream transcripts (short); (3) PASR- promoter-associated sRNAs (< 200 nts); (4) TSSa transcription start site-associated RNAs (20-90 nts); (5) TASR –terminator associated sRNAs (< 200 nts); (6) PARL - promoter-associated long RNAs (> 200 nts); (7) tiRNAs - tiny transcription-initiation RNAs (18 nts) SAGE, CAGE, GRO tags antisense RNAs (can be long) CUTs, SUTs - cryptic unstable or stable unannotated transcripts (200-600 nts)

GENOMIC ORGANIZATION of ncRNA

U1 and non-coding transcription

U1 participates in pA site selection and Pol II directionality at promoters

CUTs, SUTs, XUTs, MUTs and ALL THAT JAZZ

CUT = Cryptic Unstable Transcripts SUT = Stable Unannotated Transcripts SAT = Ssu72-associated Transcripts XUT = Xrn1-dependent UnstableTranscripts MUT = Meiotic Unstable Transcripts

NO LONGER TRANSCRIPTIONAL NOISE

(yeast, mammals, worms, plants - all organisms?)

not visible in normal wild-type cells

 accumulate in RNA degradation mutants (EXOSOME, XRN family, TRAMP) or various metabolic conditions (aging, nutrient change, cell cycle etc)

- originate from widespread bidirectional promoters
- "mRNA-like" Pol II transcripts (capped, polyadenylated)

ncRNA instability and their termination mode

3' end CLEAVAGE and POLYADENYLATION (CP)

Nrd1/Nab3/Sen1-dependent termination

ncRNA instability and their termination mode

Unstable CUTs (versus more stable SUTs)

- are detected in TRAMP or exosome mutants
- are terminated by Nrd1/Nab3-dependent mechanism and polyadenylated by Trf4/TRAMP
- Nrd1/Nab3, TRAMP and exosome complexes interact
- some CUTs (SRG1, IGS1-R) are polyadenylated by Pap1
- some CUTs are exported to the cytoplasm (XUTs) and degraded by Xrn1
- ncRNP composition is largely unknown

Wyers et al., Cell, 2005; Arigo et al., Mol.Cell, 2006a; Thiebaut et al., Mol.Cell, 2006, 2008; Houseley et al., EMBO J, 2007; Camblong et al., Cell, 2007; Thompson and Parker, Mol.Cell. Biol., 2007; Houseley et al., Mol. Cell, 2008; Vasiljeva et al., Mol.Cell, 2008; Luke et al., Mol. Cell, 2008; Berretta et al., Gene Dev., 2008; Preker et al., Science, 2008; Seila et al., Science, 2008; Xu et al., Nature, 2009; Neil et al., Nature, 2009

PHYSIOLOGICAL FUNCTIONS of CUTs

Regulation of gene expression via antisense RNA and epigenetic modification: *PHO84* (inorganic phosphate transporter)

Stabilization of as CUT leads to H3K18 deacetylation by Hda1 at PHO84 promoter

Camblong et al., Cell, 2007; Wery et al., WIREsSMB'11

PHYSIOLOGICAL FUNCTIONS of CUTs

Regulation of gene expression via antisense RNA and epigenetic modification: *GAL10-GAL1* locus

Repression (glucose) – Gal80/4 inhibitor binding at UAS inhibits transcription of GAL1/GAL10 mRNAs and allows Reb1 binding within GAL10 gene. This induces transcription of CUT RNA, which in turn leads toH3K36 histone methylation by HTM Set1 and Set2, histone deacetylation via recruitment of histone deacelylase complex Rpd3S, and further inhibition of mRNA transcription

Houseley et al., Mol.Cell, 2008

PHYSIOLOGICAL FUNCTIONS of XUTs

and trimethylation (by Set1)

• can act *in-trans*

Transcriptional silencing of the Ty1 transposon

Berretta et al., Gene Dev, 2008; Wery et al., WIREsSMB'11

ncRNA ACTION in-cis or in-trans

CUT ACTION in-cis or in-trans

CUT transcribed *in-cis*, when stabilized, recruits chromatin modification enzymes (HDAC) to gene promoter

CUT transcribed from a distant locus, when stabilized, recruits chromatin modification enzymes (HTM) to inhibit transcrition

Berretta and Morillon, Embo Rep. 2009

miRNA sponges

Non-coding or coding competing RNAs that bind and sequester miRNAs and in this way stabilize their mRNA targets

Competing endogenous RNAs: ceRNAs

- ceRNAs often antisense regulatory RNAs
- stabilize mRNA by sequestering miRNAs that target mRNA
- implicated in cancer

Guil and Esteller, TiBS 2015

Circular RNAs: circRNAs

Made of exons, arise by noncanonical back splicing catalysed by the spliceosome

CircRNA synthesis may be stimulated by some RNA binding proteins (Mbl, QKI) that bind to intronic sequences and stabilize short hairpins

circRNA expression

circRNA expression is stimulated by •inhibition of canonical splicing (depletion of spliceosome components)

readthrough transcription

circRNAs: functions

Some circRNAs contain miR-responsive elements and sequester miRNAs Are often regulated via miRNAs and degraded by Ago2 Slicer CircRNAs with distinct MREs may sequester different miRNAs CircRNAs may also sequester proteins

Taulli et al., Nat Str Mol E	Biol., 2013
Cortes-Lopez and Miura,	YJBM, 2016

circRNA	microRNA sponged
CDR1as	miR-7 (+70 sites)
	miR-671
circRNA-Sry	miR-138 (38 sites)
circRNA-CER	miR-136
circRNA-001569	miR-145
circ-HRCR	miR-223
circ-Foxo3	miR-36, miR-49, miR-433,
	and 5 other miRNAs.
circHIPK3	miR-124 and 8 other miRNAs.

AGO

VGOS

but circRNAs can be translated...

CircRNA translation:

- in a cap-independent manner (IRES)
- often driven by m⁶A modification

Model	CircRNA feature	Sequence feature	Peptide/protein
Virus Hepatitis delta (δ) virus	Circular single-stranded RNA	OFR with a TGA stop codon	Protein of 122 amino acids
Rice yellow mottle virus	Covalently closed circular RNA (220 nt)	Infinite ORF, IRES-dependent sequence	16-kDa highly basic protein
Bacteria Escherichia coli	795-nt circular mRNA	Infinite GFP ORF, IRES-independent sequence	GFP
Mammals HEK-293 cells	Single exon	IRES-dependent sequence	GFP
HEK-293 cells	Exonic	Poly-A tail-independent translation	NH2-terminal portion of NCX1 protein (70-kDa)
Rabbit reticulocyte lysate	Exonic	Cap-independent translation, IRES-independent sequence, poly-A tail-independent translation	EGF, IGF-1, IGF-2
HeLa cells	Exonic		

circRNAs may regulate transcription

exon-intron circRNAs (ElciRNAs)

- associate with U1 snRNP in the nucleus
- enhance the expression of their parental gene in

U1 snRNP

Li at al., Nat Struct Mol Biol, 2015; Chen, NatRevMolCellBiol, 2016 Granados-Riveron and Aquino-Jarquin, BBA., 2016

Circular intron-derived ciRNAs regulate transcription

- accumulate in human cells due to lariat debranching defect, in the nucleus
- processing depends on GU-rich motive near 5' splice site and branchpoint
- interact with phosphorylated Pol II and modulate Pol II elongation
- regulate the expression of their parental gene

Enhancer RNAs: eRNAs

eRNAs: short (not always, up to 2 kb) ncRNAs transcribed from enhancer regions

2d-eRNAs: bidirectional, comparatively short, nonpolyadenylated 1d-eRNAs: unidirectional, long, polyadenylated

Quinn and Chang, Nat Rev Genet 2015; Lai and Shiekhattar, Curr Op Gene Dev 2014

Enhancer RNAs: eRNAs

Unusual ncRNAs: tRFs tRNA-derived RNA fragments

Stress-induced enzymatic tRNA cleavage

(S. cerevisiae, D. melanogaster, A. thaliana, A. nidulans, human cell lines)

act as miRNAs

- regulate translation
- regulate cellular stress response
- role in disease: cancer, viral infection, metabolic and neurological disease

Unusual ncRNAs: tRFs tRNA-derived RNA fragments

- > 17 short abundant tRFs (13-26 nts), generated by RNase Z from mature (5' and 3' ends) and precursor (3' trailer) tRNAs (cytoplasm, prostate cancer).
- Abundant Dicer-dependent class I tRFs from mature 3' and 5' ends (HeLa)
- Class II tRFs from RNAseZ 3' cleavage to Pol III termination (cytoplas) associate with Ago2-3. Regulation of silencing via association with Ago proteins?

- (1) tiRNAs incorporated with Piwi suppress gene transcription
- (2) tRFs associated with AGO/Piwi and suppress target gene expression.
- (3) tiRNA inhibits translation by displacing translation initiation factor from mRNA
- (4) tRFs can suppress translation through affecting ribosome elongation
- (5) tRFs can reduce mRNA stability by displacing YBX1 from 3'UTR of mRNA

Translational repression by angiogenin-derived 5'-tiRNAs with terminal 5'-oligoG

- represses translation in vitro and in vivo
- displaces eIF4G/eIF4A from uncapped transcripts and eIF4F from m⁷G cap
- triggers formation of stress granules (SGs)
- translational repressor YB-1 contributes to tiRNA-mediated repression

tRFs: functions

Translational activation by affecting ribosome biogenesis
LeuCAG3' tsRNA binds to *RPS28* and *RPS15* mRNAs and enhances their translation by disrupting secondary structure
RPS28 and RPS15 stimulate biogenesis of 40S ribosome, and so affect cell viability and apoptosis

(RPS28 mRNA)

Kim et al, Nature 2017

Unusual ncRNAs: stress derived RNA fragments

18-mer ncRNA derived from *TRM10* mRNA during salt stress in yeast

- associates with polysomes
- inhibits general translation

The biogenesis and function of ribosomal RNA-derived fragments.

ncRNAs or sPEP (small peptides)

Unusual ways of ncRNAs

Quinn and Chang, Nat Rev Genet 2015

The Role of Non-coding RNAs in Oncology

Frank J. Slack^{1,2,3,*} and Arul M. Chinnaiyan^{4,5,6,7,8,*}

Cell 179, November 14, 2019

Table 1. Oncogenic or Tumor-Suppressive Non-coding RNAs with In Vivo Experimental Evidence			DSCAM-AS1	IncRNA	breast	shRNA knockdown in mous	e interacts with proteins of the	Niknafs et al., 2016			
Name	ncRNA Class	Cancer Types Examined	In Vivo Experimental Techniques Used	Cancer-Related Mechanisms and/or Functions of ncRNA	References				xenograns	RNA processing and mediates proliferation, invasion, and metastasis	
Oncogenic ncRN miR-10b	As miRNA	breast, glioblastoma	antimiRs, CRISPR-Cas9 knockdown in mouse xenografts and allografts; transgenic knockout mouse models	targets several transcripts that encode regulators of cell-cycle progression, migration, invasion, and metastasis	Ma et al., 2010; Kim et al., 2016; El Fatimy et al., 2017	EPIC1	IncRNA	breast	shRNA knockdown in mouse xenografts	interacts with MYC transcription factor and increases its activation of target genes, leading to enhanced cell cycle progression	Wang et al., 2018
miR-21	miRNA	lung, B cell lymphoma	transgenic knockout, overexpression mouse models	targets transcripts that encode negative regulators of RAS signaling, leading to increased proliferation and decreased apoptosis	Hatley et al., 2010; Medina et al., 2010	FAL1	IncRNA	ovarian, breast	shRNA, siRNA knockdown in mouse xenografts	stabilizes components of PRC1 chromatin modifying complex to mediate expression of genes involved in proliferation and survival	Hu et al., 2014
miR-31	miRNA	lung, breast	overexpression in mouse xenografts; transgenic knockout, overexpression mouse models	targets transcripts that encode regulators of RAS, WNT, and TGF- β signaling to increase proliferation, stem cell renewal, and metastasis	Edmonds et al., 2016; Lv et al., 2017	Hotair	IncRNA	breast	siRNA knockdown, overexpression in mouse xenografts	recruits PRC2, LSD1/ CoREST/REST chromatin modifying complexes, scaffolds transcription factors at target promoters of genes involved in invasion, metastasis and profileration	Gupta et al., 2010; Li et al., 2016b
miH-155	mirna	lymphoma	transgenic overexpression mouse model, treatment with antimiRs	targets SHIP1 transcript, a negative regulator of AKT, to increase proliferation and survival	o'Connell et al., 2009; Babar et al., 2012; Cheng et al., 2015	LINK-A	IncRNA	breast	shRNA knockdown in mouse xenografts; transgenic overexpression in mammary	Interestations, and provincertable enteracts with kinases that control HIF1 x activity, y glycolysis; enhances degradation of tumor suppressors (RB, p53) and antigen peptide-loading complexes to promote immune evasion	Lin et al., 2016; Hu et al., 2019
miR-221	miRNA	liver	overexpression, treatment with antimiRs in mouse xenografts	targets transcripts of tumor suppressors and cell cycle inhibitors (e.g., p27, PTEN) to increase proliferation and	Pineau et al., 2010; Park et al., 2011				gland, LNA knockdown		
LeuCAG3'tsRNA	tsRNA	liver	LNA knockdown in PDX	enhances translation of transcripts encoding ribosomal proteins, leading to increased ribosome biogenesis and proliferation	Kim et al., 2017	IncARSR	IncRNA	RCC	shRNA knockdown, overexpression in mouse xenografts	interacts with transcriptional coactivator YAP and acts as a ceRNA for miRNAs that target RTK transcripts, leading to enhanced survival and propagation of tumor-	Qu et al., 2016a, 2016b
ARLNC1	IncRNA	prostate	short hairpin RNA (shRNA) or ASO knockdown in mouse xenografts	interacts with the mRNA encoding AR, a nuclear receptor, to promote oncogenic AR signaling.	Zhang et al., 2018	PCAT-1	IncRNA	prostate	overexpression in mouse xenografts	represses expression of BRCA2 tumor suppressor to impact DNA damage repair	Prensner et al., 2014a
CamK-A	IncRNA	breast	shRNA, small interfering RNA (siRNA) knockdown in mouse xenografts/PDX	proliferation, and survival interacts with and controls activity of kinases that modulate calcium-induced NF-KB signaling, leading to remodeling of the tumor microenvironment	Sang et al., 2018	PVT 1	IncRNA	colorectal, gastric	CRISPR-Cas9 or shRNA knockdown, overexpression in mouse xenografts	activates oncogenic signaling (MYC, STAT3) and represses expression of tumor suppressors (p15, p16), resulting in increased proliferation, angiogenesis, and decreased apoptosis	Tseng et al., 2014; Kong et al., 2015; Zhao et al., 2018
CCAT1	IncRNA	colorectal, esophageal	shRNA, siRNA knockdown in mouse xenografts	interacts with transcription factors (e.g., SOX2, p63) to activate expression of genes involved in increasing proliferation and decreasing	Kim et al., 2014; Jiang et al., 2018	SAMMSON	IncRNA	melanoma	GapmeR knockdown in PDX	interacts with and controls subcellular localization of proteins that regulate mitochondrial homeostasis and metabolism	Leucci et al., 2016
CTBP1-AS	IncRNA	prostate	siRNA knockdown, overexpression in mouse xenografts	apoptosis recruits chromatin modifying, splicing factors to promoter of a nuclear receptor corepressor (CTBP) to decrease its expression, leading to increased oncogenic AR activity	Takayama et al., 2013						

he Role of Non-coding RNAs 2 Oncology

Frank J. Slack^{1,2,3,*} and Arul M. Chinnaiyan^{4,5,6,7,8,*}

Frank J. Slack^{1,2,3,*} and Arul M. Chinnaiyan^{4,5,6,7,8,*}

Diversity of ncRNA functions

TAKE-HOME MESSAGE

- The majority of eukaryotic genomes are transcribed giving rise to a variety of RNAs
- At least some of the "invisible" transcripts in some conditions form functional ncRNAs
- These usually act in transcriptional silencing *in-cis* or *in-trans* by recruiting modifying enzymes (DNA, histones) to promoters or interacting with DNA (pRNA)
- Defects in ncRNA level or activity correlate with several diseases