GLOBAL ANALYSES of RNPs

OLD-FASHIONED BIOCHEMICAL PURIFICATION

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 249, No. 18, Issue of September 25, pp. 5903-5970, 1974 Printed in U.S.A.

Isolation, Structure, and General Properties of Yeast Ribonucleic Acid Polymerase A (or I)

(Received for publication, December 28, 1973)

JEAN-MARIE BUHLER, ANDRÉ SENTENAC, AND PIERRE FROMAGEOT

From the Service de Biochimie, Département de Biologie, Centre d'Etudes Nucléaires de Saclay, 91 190 Gif-sur-Yvette, France

FIG. 1. DEAE-cellulose column chromatography. Fraction 3 (15 ml, $A_{250 \text{ nm}}$ 0.8) was applied to a column (5 cm² × 16 cm) of DEAE-cellulose and eluted as described in the text. Fractions of 3 ml were collected and assayed for RNA polymerase activity on 10-µl aliquots for 10 min under standard conditions.

Summary of RNA polymerase A purification Values are given for 300 g of yeast cells.

TABLE I

	Fraction or step in purification	Volume	Proteins	Total activity	Specific activity
		ml	mg	units	units/mg
1.	High speed centrifugation.	530	2,300	21,000	0.9
2.	Phosphocellulose batch	290	185	38,000	203
3.	DEAE-cellulose batch	300	21	25,000	1,200
4.	DEAE-cellulose chroma-				
	tography	30	2.5	3,000	1,200
5.	Glycerol gradient	5	0.5	900	1,800

^a RNA polymerase A and B are not separated at this stage.

The RNA insert (red) is expressed in the context of RNA vector sequences (black) tethered upstream of *lacZ* (brown) and *HIS3* reporter genes via a MS2 coat–LexA fusion protein (blue and black). Gene activation depends on binding of the Gal4 activation domain (yellow) –prey fusion protein (green).

RNP IMMUNOPRECIPITATION IP, co-IP

With specific antibodies or using tagged proteins

U snRNPs with anti-TMG cap antibody

Bochnig et al, Eur. J Biochem. 1987 (Luhrmann's lab)

IP of U1 snRNP with anti-70K Ab (U1 specific protein)

A

Immunoaffinity +ion exchange

IP of snRNPs with anti-TMG cap Ab

FIG. 1. Purification of U1 snRNPs from S. cerevisiae. (A) Silver staining of snRNAs eluted from anti-m3G-cap (m7G eluate) and Ni-NTA affinity

TANDEM AFFINITY PURIFICATION (TAP)

AFFINITY PURIFICATION

MODIFIED TAP tags

Tandem

Oeffinger, Proteomics, 2012

MAGNETIC BEADS vs SEPHAROSE

Dynabeads® M- 280 Tosylactivated	Dynabeads° M-270 Epoxy		
─ ─~-}- <mark>}-</mark> ©-¤			
 Hydrophobic bead. Surface tosyl groups. Bead diameter 2.8 μm. 	 Hydrophilic bead. Surface epoxy groups. Bead diameter 2.8 µm. 		
 Direct covalent binding to primary amino- or sulfhydryl groups in proteins and peptides. 	 Direct covalent binding to primary amino and sulfhydryl functional groups in proteins and peptides. 		
 No further surface activation required. 	 No further surface activation required. 		
 Binding over night at neutral to high pH and high temperature. 	 Binding over night at neutral pH, high salt and a wide temperature range. 		

Diameter 2.8 um volume 40 000 smaller than agarose/sepharose

METHODS TO STUDY TRANSCRIPTOMES

• **SAGE** - serial analysis of gene expression

sequencing of small cDNA tags generated by type II restriction enzymes

CAGE - cap analysis of gene expression

sequencing of small cDNA tags derived from capped transcripts

• 3' long SAGE

identification of SAGE tags that originate from 3' ends of transcripts

- RNA Seq high throughput sequencing of cDNAs
- GRO-seq genomic run-on sequencing

sequencing of cDNA tags extended from nascent transcripts

tiling arrays

microarrays with overlapping probes that cover the complete genome

METHODS TO STUDY TRANSCRIPTOMES

- ChIP (ChIP-chip, ChIP-Seq) chromatin immunoprecipitation indirectly reveal unknown ncRNAs
- RIP-Seq RNA immunoprecipitation-sequencing
- ChIRP Chromatin isolation by RNA Purification (+RNA-Seq)
- ChART Capture Hybridization Analysis of RNA targets (+RNA-Seq)

biotinylated oligonucleotides used to enrich for DNA sequences associated with a particular RNA

• CRAC - CRosslinking and Analysis of cDNA

• PAR-CLIP - PhotoActivatable ribonucleoside-enhanced CrossLinking and ImmunoPrecipitation

HITS-CLIP - High-Throughput Seq CLIP

Loop formation requires interaction between factors at the promoter (THIIB) and terminator (Rna15 from CF1) /in mammals: transcription factors, nuclear receptors, insulators, chromatin remodellers, Polycomb, architectural proteins/ Loop function: facilitation of transcription reinitiation of PollI, but also repression of gene expression (PcG, DNA methylation)

5C Carbon-Copy CCC with multiple ligation-mediated amplification (LMA)

GCC Genome CC (Hi-C – deep Seq); ChIP version of GCC as 6C

ChIP Loop (indirect ChIP); 6C ChIP GCC

3C Open-ended 3C 3C-DSL e4C Capture-3C 3C-seq

4C 4C-seq TLA e4C ACT TCC GCC ELP Hi-C 5C

ChIA-PET Capture-HiC Single-cell Hi-C In situ Hi-C DNase Hi-C Micro-C

library

preparation

Hi-C - chromatin crosslinking, digestion, re-ligation, PCR amplification/deep sequencing

- biotin-labeled nucleotide incorporated at the ligation junction for selective purification of chimeric DNA ligation junctions

Belton et al., Methods, 2012

http://www.jove.com/index/details.stp?ID=2034 Hafner et al., Cell, 2010

Ascano et al., WIREs RNA, 2012

in vivo PAR-CLIP

RNA-protein interactions Methods

Zachary et al., TiBS, 2015

mRNA binding proteome

Castello et al.; He et al., Cell, 2016

TABLE 2 | Large-Scale Methods for the Discovery of RBP/RNP RNA Targets

Method	Goal	Description	Selection of RBPs Analyzed			
Non-crosslinking methods						
RIP-Chip	Target gene identification	IP of epitope tagged or endogenous RBP/RNP to isolate-associated RNAs. Isolated RNAs are analyzed by microarray. RBP/RNP targets are defined by calculating and scoring according to enrichment of IP'd transcripts over control expression values.	For comprehensive list, see Table 1 in Ref 33.			
RNA IP and high throughput sequencing (RIP-Seq)	Target gene identification	Same procedure as RNA IP followed by microarray analysis (RIP-Chip); IP'd RNA is quantified by RNAseq. RBP/RNP targets are defined, similar to RIP-Chip, by calculating enrichment scores over control.	TDP-43, ³⁴ LIN-28, ³⁵ Polycomb proteins ³²			
Photocrosslinking methods	;					
CLIP	Target site identification; definition of RRE	Ultraviolet (UV) 254 photocrosslinking of RNA to RBPs in live cells or tissues prior to lysis. Crosslinked RNA is trimmed by RNases and RNA-protein complexes are fractionated by sodium dodecyl sulfate polyacylamide gel electrophoresis. Crosslinked RNAs are isolated, 3' and 5' adapters for RT and polymerized chain reaction ligated. The cDNA library is inserted into plasmid for bacterial transformation, cloning, and sequencing.	Nova, ³⁶ SF2, ³⁷ CUGBP1, ³⁸ Rsr, ³⁹ MSY2, ⁴⁰ SAM68, ⁴¹ hnRNP A1 ⁴²			
HITS-CLIP	Target site identification; definition of RRE	Similar to standard CLIP, however, cDNAs are deep sequenced (454 or Solexa). Overlapping sequence reads are clustered and RBP/RNP targets are defined based on enrichment over negative controls.	TDP-43,43,44 Nova,45 AG02,46,47 Alg-1,48 SFRS1,49 FOX2,50 PTB,51 Khd1 ⁵²			
ICLIP	Target site identification; definition of RRE sequenced. RBP/RNP targets are similarly define as in HITS-CUP. Sites of crosslinking are interpreted as the (1) position a sequence read maps to (indicating the putative RT stall sites).	Crosslinking procedures similar to CLIP. Partial	hnRNP C, ⁵³ TIA1, TIAL1 ⁵⁴			
		Method Photoactivatable ribonucleoside- enhanced CLIP	Goal Target site identification; definition of RRE	Description Incubation of live cells with photoactivatable ribonucleosides (4-thiouridine and 6-thioguanosine) that are incorporated into nascent transcripts. UV-365 photocrosslinking of RNA to proteins prior to here. IP of epitope	Selection of RBPs Analyzed ELAVL1, ^{57,58} QKI, ⁵⁹ IGF2BP1-3, ⁵⁹ AGO1-4, ⁵⁹ PUM2, ⁵⁹ TNRC6A-C, ⁵⁹ FUS, ⁶⁰ EWSR1, ⁶⁰ TAF15 ⁶⁰ In analysis, ⁸¹ CC1. CIIC6PP1	
ICLAP	Target site identification; definition of RRE	Similar to ICLIP except that the RBP is Strep- and polyhistidine epitope tagged. Streptavidin beads are used in the first purification step. Immobilized metal-ion affinity chromatography (IMAC) under denaturing conditions is performed as a secondary purification. Isolated RNAs are converted into cDNA and sequenced similar to ICUP.	TIA1, TIAL1		tagged or endogenous RBP/RNP to isolate-associated RNAs. cDNA library preparation of isolated RNAs. Putative RBP/RNP target sites are scored by frequency of crosslinking evidence, seen as a characteristic T2C (or G2A) nucleotide mutation.	HI ANAYSIS, BICET, COOBT, DHX9, DICER, DND1, EXPORTINS, FMR1, FXR1, FXR2, ELAVL2–4, LIN28B, MBNL1, MOV10, NCL, P54, RBM20, RBPMS, SND1, TARBP2, TDP-43, TIA1, TSN, TSNAX, TTP, WT1
CRAC	Target site identification	Similar in concept to CLAP, where a tandem affinity purification protocol is used. RBPs are engineered to contain C-terminal 6X-histidine, tobacco etch virus (TEV) protease site, and Protein A tags. Immunoglobulin G beads are used as a first purification step, followed by TEV protease treatment to elute crosslinked RNA—protein complexes. IMAC is performed under denaturing conditions as a secondary purification. Individual RNAs were analyzed by northem blot or sequenced after amplification with gene-specific primers.	Prp43, ⁵⁵ U3 snoRNA-binding sites of Nop1, Nop56, Nop58, and Rrp9 ⁵⁶		Ascano et al., WIRE	s RNA, 2012

RNABP	Method	Tissue/Cell Type	Principle Findings	References	
Nova	CLIP and HITS-CLIP	Mouse brain	Binding motif	Ule et al. ³⁷	
			Biologically coherent targets	Licatalosi et al. ⁴⁸	
			RNA splicing map	Racca et al. ¹⁶	
			Regulation of poly(A) usage		
			3' UTR localization Meta analysis elements	Yano et al. ¹⁰⁰ Zhang et al. ⁴⁹	
РТВ	HITS-CLIP	HeLa cells	Binding motif	Xue et al. ⁵⁰	
			RNA splicing map		
Tagged-Khd1	HITS-CLIP	Saccharomyces cerevisiae	Binding motif	Wolf and Fink ⁵¹	
			Biologically coherent targets		
			Discovery of role in translational regulation		
hnRNP A1	CLIP	HeLa cells	Discovery of role in regulating pri-mRNA processing	Guil and Caceres ⁵²	
Fox2	HITS-CLIP	Human embryonic	Biologically coherent targets	Yeo et al. ⁵³	
CEDC4			RNA splicing map	Camfaul at al 54	
SEKST	CLIP and HITS-CLIP	HEK2931 Cells	Binding motif	Sanford et al. ⁵⁵	
Tanuad Dura 4	CLID	F :1	Sites relevant to disease	Santord et al.55	
Tagged-Krm4	CLIP	Filamentous fungus	Binding motif	Becht et al.	
CUCPPI		Mouso hindhrain	Pinding motif	Daughtors at al 57	
COOBFI	CLIP	wouse minubram	Validation of colicing target	Daughters et al.	
Tagged-snRNPs	HITS-CLIP	S. cerevisiae	Detailed mapping of protein-rRNA and snoRNA interaction sites	Granneman et al. ⁵⁸ Bohnsack et al. ⁵⁹	
Ro homolog Rsr	CLIP	Eubacterium Deinococcus radiodurnas	Discovery of interaction with rRNA	Wurtmann and Wolin ⁶⁰	
hnRNP C	HITS-CLIP	HeLa cells	Binding motif	Konig et al. ⁶¹	
			RNA splicing map		
			Discovery of hnRNP particle organization related to splicing		
Ago	HITS-CLIP	Mouse brain; HeLa	Ago-miRNA binding sites defined	Chi et al. ⁶²	
Tagged-Ago	PAR-CLIP	HEK293 cells		Hafner et al. ⁴³	
Alg-1	HITS-CLIP	C. elegans	Alg-1-miRNA binding sites defined	Zisoulis et al. ⁶³	
Msy2	CLIP	Mouse seminiferous tubules	Discovery of interaction with piRNAs, other small RNAs	Xu et al. ⁶⁴	

TABLE 1 | RNA Binding Proteins Studied by CLIP

Darnell, WIREsRNA, 2010

PARE: Parallel Analysis of RNA End mRNA DEGRADOME RNA-seq

Zhai et al., Methods, 2014

DRS: Direct RNA sequencing

Total RNA > 200 nt, rRNA-depleted

Poly(A) sites

TAIL-seq: RNA 3' end sequencing Poly(A) tail length and 3' end modifications (e.g. U-tailing)

Sherstnev et al., Nat Str Mol Biol, 2012; Zhai et al., Mol Cell, 2014

Poly(A) tail analyses

Nicholson and Pasquinelli TiCB 2018

Poly(A) tail analyses

3' UTR-seq: in vivo analysis of mRNA decay rules

Rabani et al., Mol Cell, 2017

RNA MODIFICATIONS

RNA MODIFICATION

antibody-free m6A-seq DART-seq NNA RNA RNA RNA Badjacent to RNA RNA Badjacent to BART-seq

- Cytidine deaminase APOBEC1 fused to m⁶A-binding YTH domain
- APOBEC1-YTH induces C-to-U deamination at sites adjacent to m6A
- detected using RNA-seq

m⁵C RNA-seq

Detection of RNA-DNA hybrids

R-loop

IP with specific RNA/DNA

S9.6 Ab followed by RNAseq

R-loop

RNA/DNA

hybrid

RNA/DNA tripplex

Enrichment of DNA-associated RNA

RNA Pol

- SPRI (Solid Phase Reversible Immobilization) - based paramagnetic bead size selection

- DNA-IP using anti-DNA Ab

Identification of NAD⁺ capped RNAs

RNA binding

protein

Genomic DNA

ChIRP

......

biotinylated

tiling oligos

streptavidin magnetic beads

IncRNA

proteins

ChIRP

DNA

Chu et al., Mol. Cell, 2011; Simon et al., PNAS '11

PARS: Parallel Analysis of RNA Structure

measuring RNA structural properties by deep sequencing

- PARS confirmed for known RNA structures
- used to establish structures of > 3000 yeast transcripts
- unexpected conclusion: coding mRNA regions are more structured than UTRs!

PARS: Parallel Analysis of RNA Structure

Genome-wide Measurement of RNA Folding Energies

Molecular Cell *48*, 169–181, October 26, 2012 Yue Wan,¹ Kun Qu,^{1,8} Zhengqing Ouyang,^{1,2,8} Michael Kertesz,³ Jun Li,⁴ Robert Tibshirani,⁴ Debora L. Makino,⁵ Robert C. Nutter,⁶ Eran Segal,^{7,*} and Howard Y. Chang^{1,*}

Regulatory Impact of RNA Secondary Structure across the The Plant Cell 2012 Arabidopsis Transcriptome^{WDA}

Fan Li,^{a,b,c,1} Qi Zheng,^{a,b,1} Lee E. Vandivier,^{a,b,d} Matthew R. Willmann,^{a,b} Ying Chen,^{a,b,c} and Brian D. Gregory^{a,b,c,d,2}

CLASH (intra- and intermolecular RNA-RNA interactions)

<u>C</u>rosslinking <u>L</u>igation <u>a</u>nd <u>S</u>equencing of <u>Hybrids</u>

U3-18S rRNA interactions

Kudla et al., PNAS, 2011

MARIO (intra- and intermolecular RNA-RNA interactions) <u>Mapping RNA interactome in vivo</u>

- (1) cross-linking RNAs to proteins
- (2) RNA fragmentation, protein denaturing and biotinylation
- (3) immobilization of RNA-binding proteins at low density
- (4) ligation of a biotinylated RNA linker
- (5) proximity ligation under a dilute condition
- (6) RNA purification and RT
- (7) biotin pull-down
- (8) construction of sequencing library

Nguyen et al., NatComm, 2016

RNA-seq-based methods for mapping RNA structures, RNA–RNA and RNA–DNA interactions

Nguyen et al, TiG, 2018

RNA structure in vivo: SHAPE,

Cherical and encoded a structure probing

SHAPE: Selective 2'- Hydroxyl Acylation and Primer Extension

SHAPE-seq: SHAPE followed by RNA-seq

PARIS: Psoralen Analysis of RNA Interactions and Structures

SPLASH: Sequencing of Psoralen crosslinked, Ligated, and Selected Hybrids

LIGR-seq: LIGation of interacting RNA followed by high-throughput Sequencing

SHAPE <u>chemicals</u>: DMS, dimethyl sulfate; 1M7, 1-methyl-7-nitroisatoic anhydride SHAPE <u>enzymes</u>: P1 nuclease, RNases V1 and S1

Table 1. Transcriptome-wide RNA Structure Probing Methods					
Assay	Probing Agent	Detection	In Vitro Probing	In Vivo Probing	
FragSeq	P1 nuclease	single-stranded bases	Х		
PARS	RNase V1 and S1 nuclease	paired and single- stranded regions	Х		
SHAPE-seq	1M7	single-stranded bases	Х		
mod-seq	DMS	unpaired A & C		Х	
DMS-seq	DMS	unpaired A & C	Х	Х	
Structure-seq	DMS	unpaired A & C	Х	Х	
icSHAPE	NAI-N ₃	single-stranded bases		Х	
SHAPE-MaP	1M7	single-stranded or unbound bases	Х	х	
PARIS	AMT	base-paired sequence partners		х	
LIGR-seq	AMT	base-paired sequence partners		х	
SPLASH	biotinylated psoralen	base-paired sequence partners		х	

PARIS SPLASH LIGR

- in vivo psoralen or AMT, intercalate into RNA duplex and generate inter-strand adducts between juxtaposed pyrimidine bases upon 365 nm UV irradiation

- ssRNAse S1 limited digest
- RNA end proximity ligation

(circRNA ligase)

- removal of uncrosslinked RNA (ss and structured RNAase R1)
- crossling reversal (254 nm)

- RNAseq

[AMT = psoralen derivative 4'aminomethyltrioxalen] and

Graveley, Mol Cell, 2016

RNA structure in vivo: SHAPE, icSHAPE

icSHAPE: click selective 2'-hydroxyl acylation and profiling

RNA-seq-based mapping of RNA structures

Sequencing based for mapping RNA structures				
Method	Advantages	Limitations		
Enzyme-based methods				
PIP-seq	 Reveals both protein-bound RNA regions and RNA secondary structure. Provides strand-specific information. 	Limited resolution at small nucleotide bulges and loops.		
PARS	 Increased sensitivity by sequencing both single- and double-stranded regions. 	• RNA was folded in vitro.		
PARTE	 Measures melting temperature. Single-nucleotide resolution. Preserves <i>in vivo</i> RNA modifications. Can infer RNA regulatory motifs. 			
FragSeq	Simple and fast protocol.Accompanied with modifiable software.			
Chemical-based methods				
DMS-seq	Identifies RNA structure in native conditions.Single-nucleotide resolution.	Limited to the analysis of two bases (As and Cs).RNA-binding proteins can block DMS activity.		
icSHAPE	Measures base flexibility.Single-nucleotide resolution.	 Limited to the analysis of relatively short (~300 nt) in vitro- transcribed RNAs. 		
Structure-seq	Single-nucleotide resolution.Applicable to both <i>in vitro</i> and <i>in vivo</i> analyses.	Limited to the analysis of two bases (As and Cs).RNA-binding proteins can block DMS activity.		
Mod-seq	Can probe structures of long RNAs <i>in vivo</i>.Single-nucleotide resolution.	• Limited to the analysis of two bases (As and Cs).		
CIRS-seq	Single-nucleotide resolution.Can identify structural requirements for RNA-binding proteins.			
SHAPE-MaP	 Can be customized for different applications. Applicable to analysis of long RNAs. Can infer structural changes of single-nucleotide and other allelic polymorphisms. 	- Length of the RNA must be at least ${\sim}150$ nt for the randomer and native workflow, and at least ${\sim}40$ nt for the small-RNA workflow.		

Nguyen et al, TiG, 2018

RNA-seq-based mapping of RNA-RNA interactions

Sequencing based for mapping RNA-RNA interactions				
CLASH	 Stringent purification conditions remove nonphysiological interactions. 	Requires prior knowledge of an RNA-binding protein.Requires a good antibody.		
hiCLIP	 Incorporation of an adaptor between two RNA molecules increases ligation efficiency and improves accuracy in sequence mapping. 	 Requires prior knowledge of an RNA-binding protein. Requires a good antibody. No <i>in vivo</i> crosslinking step may incur challenges in differentiating <i>bona fide</i> and spurious RNA attachments. 		
PARIS	Many-to-many mapping.	 4'-Aminomethyl trioxsalen (AMT) preferentially crosslinks pyrimidine bases and may introduce bias. 		
SPLASH	Improves signal-to-noise ratio by leveraging biotinylated psoralen.Many-to-many mapping.	 Psoralen preferentially crosslinks pyrimidine bases and may introduce bias. 		
LIGR-seq	 Many-to-many mapping. 	 AMT preferentially crosslinks pyrimidine bases and may introduce bias. 		
MARIO	 Many-to-many mapping. Incorporation of an adaptor between two RNA molecules increases ligation efficiency and improves accuracy in sequence mapping. Reports both between- and within-molecule interactions. 	Loses RNA duplexes that are not associated with any proteins.		
	Captures proximal regions of an RNA molecule in 3D.Reveals single-stranded regions of each RNA.			

RNA-seq-based mapping of **RNA-DNA** interactions

Sequencing based for mapping RNA-DNA interactions				
Method	Advantages	Limitations		
	Captures proximal regions of an RNA molecule in 3D.Reveals single-stranded regions of each RNA.			
Sequencing based for mapping RNA-DNA interactions				
ChIRP	 Tilling the entire transcript with antisense DNA. 	Limited to analyzing RNA at a time.		
CHART	 Tilling the RNase H accessible region by antisense DNA. 	Limited to analyzing RNA at a time.		
RAP	 Tilling the entire transcript with complimentary RNA. 	Limited to analyzing RNA at a time.Limited to analysis of long RNA.		
MARGI	Many-to-many mapping.Captures interaction at native conditions.	• Require a large number (10 ⁷) of cells.		
ChAR-seq	 Many-to-many mapping. Proximity ligation is performed in nuclei, which reduces nonspecific interactions. 	 Only sequencing reads that cover the entire bridge sequence are informative, reducing the number of informative reads. 		
GRID-seq	 Many-to-many mapping. Proximity ligation is performed in nuclei, which reduces nonspecific interactions. 	 The informative sequence lengths on the RNA side and the DNA side are both limited to ~20 bases, resulting in challenges in unambiguous sequence mapping. 		

in vitro methods

in vivo methods

RNA chromatography

RNAse A/T1

et-7a-1TI

beads

miR-101-1

oading control

miR-101-1 T

let-7a-1 TL

beads

RNase-assisted RNA chromatography

Hegarat et al., NAR, 2010; Michlewski and Caceres, RNA, 2010

Higg and Collins, RNA, 2007; Srisawat and Engelke, Methods, 2002; Bachler et al., RNA, 1999; Weil et al., TiCB, 2010; Piekna-Przybylska et al., Meth Enzymol, 2007

Nascent RNA analyses

c Run-on RNA enrichment

Wissink et al, Nat Rev Genet, 2019

Nascent RNA methods

<u>caRNA- seq</u>

chromatin-associated RNAseq <u>**CoPRO**</u> coordinated precision run-on and sequencing <u>**FISH**</u> fluorescence in situ hybridization

<u>mNET-seq</u> mammalian native elongating transcript seq

<u>NET-seq</u> native elongating transcript seq

PRO-cap precision run- on with cap selection

PRO-seq precision run- on seq **SL AM-seq** thiol (SH)-linked alkylation for the metabolic sequencing of RNA **SMIT-seq** single-molecule intron

tracking seq **TT- seg** transient transcriptome

seq

Method	Advantages	Considerations
caRNA-seq	 Can be used to isolate all chromatin-associated RNA species Can be combined with methods that assay co-transcriptional processes, including RNA methylation and editing 	Also sequences non-nascent RNAs that stably associate with chromatin
Start-seq	 Simultaneously identifies initiation and pausing sites Allows de novo calling of putative enhancers 	Does not report transcription beyond the first ~100 nucleotides
Yeast NET-seq	 Is Pol II specific (antibody enrichment) Identifies Pol II positions at nucleotide resolution genome-wide 	Is limited to cells with epitope-tagged Pol II
mNET-seq	 Is Pol II specific (antibody enrichment) Identifies Pol II positions at nucleotide resolution genome-wide Can isolate Pol II with different post- translational modifications 	 Includes RNAs that are stably associated with Pol II Does not currently include RNA <30 nucleotides in length Has detected eRNA transcription from previously called enhancers
PRO-cap	 Identifies transcription initiation sites Allows de novo calling of putative enhancers 	Does not report transcription beyond the first ~100 nucleotides
PRO-seq	 Captures RNAs from transcriptionally competent polymerases Identifies positions of active transcription at nucleotide resolution genome-wide Allows de novo calling of putative enhancers 	 Does not measure polymerase backtracking Also captures RNAs being transcribed from Pol I and Pol III
CoPRO	 Simultaneously identifies initiation and pausing sites Measures RNA capping status 	Does not measure transcription beyond promoter-proximal pause site
SMIT-seq	Measures splicing status during transcription	Limited to species with short introns
TT-seq	 Captures RNAs from actively transcribing polymerases Can be used to determine RNA stability Identifies transcription termination sites 	 Does not detect Pol II pausing Has detected eRNA transcription from previously called enhancers
SLAM-seq and TimeLapse-seq	 Captures RNAs from actively transcribing polymerases Can be used to determine RNA stability 	 Requires deep sequencing to measure chemical conversion rate Long labelling times do not capture newly synthesized RNA
Intron sequential FISH	 Detects transcription of thousands of genes in single cells Contains positional information of transcribed genes in the 3D space of the nucleus 	 Does not report chromosomal positions of active Pol II complexes Does not distinguish different steps of transcription

Wissink et al, Nat Rev Genet, 2019

• Requires a library of intron-targeting probes and series of hybridizations

Nascent RNA methods

Method	Transcription step						
	TSS®	RNA capping	Promoter-proximal pausing	Co-transcriptional RNA processing	Transcription termination	Pol II CTD modification	Transcription bursting
Chromatin isolation-based	methods						
caRNA-seq	No	No	No	Yes42,105-107	No	No	No
Start-seq	Yes ⁴³	No	Yes ⁴³	No	No	No	No
mNET-seq	No	No	Yes41,73	Yes41,63,64	Yes ⁴¹	Yes41,63	No
SMIT-seq	No	No	No	Yes ^{159,160}	No	No	No
Run-on methods							
GRO-cap and PRO-cap	Yes ^{4,42}	No	No	No	No	No	No
GRO-seq, PRO-seq and ChRO–seq	No	No	Yes ^{42,48,74}	Yes ¹⁶⁶	Yes ⁴²	No	No
CoPRO	Yes49	Yes49	Yes ⁴⁹	No	No	No	No
Metabolic labelling method	s						
TT-seq	No	No	No	No	Yes47	No	No
Imaging-based methods							
Intron sequential FISH	No	No	No	No	No	No	Yes ⁵⁵

Analysis of Nascent Transcripts- GRO-seq

Analysis of Nascent Transcripts

Expression of hENT1 nucleoside transporter enables uptake of UTP derivatives

Non-perturbing RNA labeling in yeast Allows dynamic transcriptome analysis: sythesis and decay rates and the study of nascent transcripts

> Miller et al., Mol Syst Biol, 2010; Barrass et al, Genome Biol, 2015

Analysis of Nascent Transcripts

Churchman and Weissman, Nature, 2011

Spicuglia et al., Methods, 2013

Comparison of different RNA-Seq approaches

Wissink et al, Nat Rev Genet, 2019

mRNA fluorescent labeling for imaging

mRNA fluorescent labeling for imaging

FISH: Fluorescent in situ hybridization

Abbaszadeh and Gavis, Methods, 2016

RNA LOCALIZATION: FISH

Complex quantification allows analysis of single-molecule gene expression, e.g. transcription/splicing in real time, RNA level in single cells. • Constitutively expressed genes are transcribed by single events separated in time; regulated genes (e.g. by SAGA) are expressed by transcriptional bursts • Transcription of functionally related constitutive genes is not coordinated (regulated post-transcriptionally or post-translationally) /Singer lab/

RNA LOCALIZATION: FISH

Multi-colored smFISH:

 Nuclear mRNAs are partially extended
 Translating mRNAs usually do not have a circular form (no interacting 5' and 3' ends)
 mRNAs in stress granules are more compacted than translating mRNAs

RNA LOCALIZATION: FRAP and FLIP

FRAP - fluorescence recovery after photobleaching FLIP - fluorescence loss in photobleaching to analyse molecule kinetics in living cells

RNA LOCALIZATION: FRAP

RNA LOCALIZATION: FRAP

- Analysis of: transcription rates
 - 3'-end formation
 - transcript release

Other modern approaches

Ribosome Profiling Ribosome Mapping Ribo-seq

In vivo analysis of translating ribosomes and mRNAs

- transcript abundancy
- translation kinetics and efficiency/protein synthesis rate
- polysome occupancy profiles
- co-translational processes
- combined with RNASeqcorrelations between transcription and translation
- short and alternative ORFs
TREAT- 3'-RNA end accumulation during turnover

Single-mRNA imaging of RNA degradation in single cells

TREAT- 3'-RNA end accumulation during turnover

real-time observation of Ago2 slicing of TREAT mRNAs

 single-mRNA imaging of RNA degradation in single cells

LINE FISH Nucleus Cytoplasm 0h 2h 12h 16h 8h

 TREAT mRNAs are not degraded in Pbodies, also in stress

DCP1- PB marker

Horvathova et al. Mol Cell, 2017

Wang et al, Cell, 2016 Yan et al., Cell 2016

In-Cell Discovery of RNA–Protein Interactions incPRINT

APEX and BioID Proximity biotin-based labeling methods

APEX: applications

Protein and RNA localization RNP organization- translation, granules

Fazal et al, Cell, 2019; Padron et al, Mol Cell, 2019

APEX: applications

Protein-RNA (RNP) complexes

Lyse cells Streptavidin AP Protease digestion and LC-MS/MS

Trinkle-Mulcahy, F1000Research, 2020

APEX: applications

Chromatin-associated protein complexes

Trinkle-Mulcahy, F1000Research, 2020

OOPS, TRAPP, XRNAX RNP interactome, RPBome

<u>OOPS</u> - orthogonal organic phase separation <u>TRAPP/PAR-TRAPP</u> - RNA-associated protein purification

PAR-TRAPP)

[¹³C₆] K

[¹³C₆] R

isolation

Guanidine SCN Phenol

Sarkosyl

Na Acetate pH 4

digestion

SILAC

quantitative

MS/MS analysis

SUMMARY or HOW TO PASS THE EXAM?

- THEORY
- METHODS
- GENERAL IDEAS, CONCEPTS, SOLUTIONS
- PATHWAYS
- MECHANISMS

