Udział metabolizmu RNA w procesach fizjologicznych: rozwój i odpowiedź na stres

dr Anna Golisz

Levels of regulation

- I. Chromatin and transcription
- II. RNA processing: pre-mRNA splicing (alternative splicing - AS) and 3' formation
- III. RNA stability
- IV. Regulation via microRNA and lncRNA

There are ma PYR/ The 14 PYR/PYL/RCARs	PYL/RCA	U	
in Arabidopsis	Common Name		
a) At1g01360 PYL9 RCAR1	Soybean	Glycine max	23
At4g01026 PYL7 RCAR2	Corn	Zea mays	20
At4g27920 PYL10 RCAR4 PYL10 RCAR4 PYL10 RCAR4 PYL11 RCAR5	Western poplar	Populus trichocarpa	14
At5g45870 PYL12 RCAR6 At4g18620 PYL13 RCAR7 At5g05440 PYL5 RCAR8	Arabidopsis	Arabidopsis thaliana	14
At2g40330 PYL6 RCAR9 At2g38310 PYL4 RCAR10	Rice	Oryza sativa	11
Attg17870 PYR1 RCAR11	Grape	Vitis vinifera	8
At1973000 PYL1 RCAR12 At1973000 PYL3 RCAR13	Sorghum	Sorghum bicolor	8
At2g26040 PYL2 RCAR14 0.3 0.2 0.1 0	Barrel medic (a model legume)	Medicago truncatula	6
	Batelli, G., and Zhu, JK. J. Exp.Bo A.S., Gonugunta, V.K., Christmann	t. 61: <u>3199-3210</u> , A., and Grill, E. (2010) Trends Plan	t Sci. 15: <u>395-401</u>

Splicing factor		Abiotic stress under which an in vivo role was reported ^a					
		ABA	Drought	Salt	Cold	Heat	Cadmium
SR proteins	SR45	-	X	Х	×	×	Х
	SR34b	X	X	Х	X	X	-
	RS40	-	Х	-	X	X	Х
	RS41	-	Х	-	X	X	Х
GRPs	GRP2	Х	-	Х	Х	Х	X
	GRP7	X	-	-	-	X	Х
	RZ-1a	-	-	-	X	Х	Х
CBPs	CBP20	-	-	-	X	X	Х
	CBP80/ABH1	-	-	-	X	X	Х
Spliceosome	SKIP	X	-	-	Х	Х	Х
components	SAD1	-	-	-	Х	Х	Х
	LSm4	-	Х	-	X	Х	Х
	RDM16	-	Х	-	Х	Х	X
	STA1	-	-	-	-	-	Х
	RBM25	-	-	-	Х	Х	X Laloum

Role	miRNA family	Target families/genes	Reference(s)			
Auxin signaling	miR160 miR164 miR167 miR390 miR393	ARF10 NAC1 ARF8 ARF TIR1/F-box AFB	[122,123] [130] [122] [114] [15,124]				
Leaf development	miR159 miR164	MYB NAC1	[48,127,128 [132]	Role	miRNA family	Target families/genes	Reference(s)
	miR166 miR172 miR319	HD-ZIPIII AP2 TCP	[131] [127] [128]	Adaptive responses to stress	miR156 miR159	SBP MYB	[37,43,44,103] [16,37,43,48,49]
Leaf polarity	miR166 miR168 miR390	HD-ZIPIII AGO1 ARF	[120] [121,131] [120] [114]		miR160 miR167 miR168	ARF10 ARF8 AGO1	[37,50,100] [37,42,43] [37]
Floral organ identity	miR160 miR164 miR172	ARF10 NAC1 AP2	[122,123,1 [132,133] [134]		miR169 miR171 miR319	NFY/MtHAP2-1 SCL TCP	[37,43,52,110,13 [37,43] [16,37,43]
Flowering time	miR319 miR156 miR159	TCP SBP MYB	[127,128] [125–127] [48]		miR393 miR395 miR396	TIR1/F-box AFB APS/AST GRF	[15,16,37,42,43] [15,16,37] [16,37]
	miR172 miR319	AP2 TCP	[127,135] [127]		miR397 miR398 miR399	Laccases, Beta-6-tubulin CSD UBC24/PHO2	[15,16,37] [15,19,37,43,53,7 [36,37,75,76]
				Regulation of miRNA	miR408 miR162 miR168 miR403	Plastocyanin DCL1 AGO1 AGO2	[16,37,44] [137] [120] [114]
				Others	miR158 miR161	At1g64100 PPR	[114]
					miR163 miR173 miR174	At1g66700, At1g66690 At3g28460 At1g17050	
Khraiwesh et al. 2011 E	Biochimica et	Biophysica Acta			miR175 miR394	At5g18040, At3g43200, At1g51670 F-box	

Mechanism of miRNAs regulation of cancer	MicroRNAs	Target pathway/gene product	References
† Proliferation	↑ miR-93; ↑ miR-200c; ↑ miR-221; ↑ miR-222; ↓ miR-7; ↓ miR-126; ↓ miR-140-5p; ↓ miR-320	TIMP2, P27 ^{Kip1} , SOX4, EGFR, ADAM9, PDGFRA	Bai et al. (2017), Guan et al. (2017), Lan et al. (2015) le Sage et al. (2007), Wang et al. (2015, 2016), Web ster et al. (2009)
1 Apoptosis	\uparrow miR-10b; \uparrow miR-21; \uparrow miR-25; \uparrow miR-155; \uparrow miR-222; \downarrow miR-143; \downarrow miR-195; \downarrow miR-365; \downarrow miR-491-5p	Bel-2, Bel-AL, PUMA, PTEN, DR4, TP53, SOCS1, SOCS6, AKT, Ras/MEK/ERK	Bahena-Ocampo et al. (2016), Gu et al. (2018), Guo et al. (2012), Hatley et al. (2010), Jiang et al. (2014) Li et al. (2017c), Liu et al. (2012), Razumilava et al. (2012), Song et al. (2017), Wu et al. (2017), Xue et al. (2016), Zhu et al. (2015)
† EMT	⊥ miR-30a; ↓ miR-33b; ↓ miR-101; ↓ miR-381; ↓ miR-200 family (miR-200a)	ZEB1/ZEB2, vimentin, Wnt/β-catenin/ZEB1, SOX4, Snai1	Cheng et al. (2012), Cong et al. (2013), Guo et al. (2014), Korpal et al. (2008), Kumarswamy et al. (2012), Liu et al. (2014), Pang et al. (2017), Qu et al (2015
† Invasiveness † Migration † Metastases † Chemo/radio-resistance	↑ miR-21; ↑ miR-25; ↑ miR-122; ↑ miR-130; ↑ miR- 141/200c; ↑ miR-182-5p; ↑ miR-548j; ↓ miR-122-5p; ↓ miR-127; ↓ miR-1127-3p; ↓ miR-129-5p; ↓ miR-210-3p; ↓ miR-133	TIMP3, PTEN, FBXW7, KRAS, MAPK, ITGA6, TGFpR2, VEGF-A, DUSP4, FGFRL1, RAB27A, FNDC3B, Dicer, TNS1	Choi et al. (2016), Duan et al. (2016), Fan et al. (2018), Gong et al. (2015), Guo et al. (2013), Li et a (2017a), Li ut et al. (2013), Martín del Campo et al. (2015), Wang et al. (2018a), Xu et al. (2017, 2018), Yang et al. (2017), Zhan et al. (2016
† Adaptation to hypoxia	↑ miR-24; ↑ miR-182; ↑ miR-210	FIH1, HIF-1a, PHD2, PTPN1	Li et al. (2014b, 2015c), Roscigno et al. (2017)
↑ Angiogenesis	↑ miR-130a; ↑ miR-139; ↑ miR-155; ↑ miR-182; ↑ miR-200c; ↑ miR-210; ↑ miR-449a; ↓ miR-140-5; ↓ miR-4497	VEGF-A, VEGFR2, RASA1, c-MYB, VHL, FGFRL1, CRIP2, HIF-1α	Du et al. (2015), Kong et al. (2014), Li et al. (2015a), Lu et al. (2017), Shi et al. (2016), Wang et al. (2014a), Yang et al. (2016, 2018)

DUSPA Dual Specificity Phosphatase 4, FBAW7 F-box and WD-40 domain protein 7, FGFRL7 libroblast growth factor receptor-like 1, FHH factor-inhibiting HIF hydroxylase 1, FNDC3B Fibronectin Type III Domain Containing 3B, HIFTa hypoxia-inducible factor 1a, ITGA6 integrins subunit-4 6, RRAS Ki-ras Carisa stratoma vial noncogene homolog, MAPK mitogenactivated protein kinase 4, PDGFRA platele-derived growth factor receptor A, PHD2 hypoxia-inducible factor 10, RNAS Ki-ras Kirsten rat staroma vial noncogene homolog, PTPN1 prosineprotein phosphatase non-receptor type 1, PUMA the PS3 upregulated modulator of approtsin-pA72⁴⁰ cyclin-dependent kinase inhibitor 18, RABZ7 Ras-related protein Ra-57A, RASH RAS p21 protein activator 1, SNA11 snail family zinc finger 1, SOC51 suppressor of cytokine signaling 1, SOC36 suppressor of cytokine signaling 6, SOV4 the SRY-box 4, TGF/R2 the transforming growth factor bare receptor-2, TIRP3 tusno inhibitor of metalloproteinase 2, TIMP3 tissue inhibitor 16, RTNS Tras 11, TPS3 tumor protein p53, VEGF vascular endotheila growth factor, VHL von Hippel-Lindau tumor suppressor, ZEB1 Zinc finger E-box-binding homeobox 1, ZEB2 Zinc finger E-box-binding homeobox 2

Samec et al. Journal of Cancer Research and Clinical Oncology (2019) 145:1665-1679

Role of tRNA-derived stress-induced RNAs (tiRNAs) in cancer

Cancer type	tiRNA	Sample type	Function	Reference
Brest cancer	5' tiRNA-Arg/Asn/Cys/Gln/Gly/Leu/Ser/Trp/ Val/Asp/Lys	Serum	Associated with clinicopathological characteristics	Dhahbi et al. (2014)
	5' tiRNA-Val	Cell, tissue, serum	Suppress cell proliferation, migration and invasion	Mo et al. (2019)
Prostate cancer	5'-tiRNA derived from the pseudogene tRNA-Und-NNN-4-1	Seminal fluid	Noninvasive biomarker for cancer screening	Dhahbi et al. (2018)
	5'-tiRNA-Asp-GUC, 5'-tiRNA-Glu-CUC 5'-SHOT-RNA ^{AspGUC} , 5'-SHOT-RNA ^{HisGUG} , 5'-SHOT-RNA ^{LysCUU}	Serum, tissue Cell	Prognostic parameter Enhance cell proliferation	Zhao et al. (2018) Honda and Kirino (2016) Honda et al. (2015)
Lung cancer	5'-tiRNA-Leu-CAG	Cell, tissue, serum	Promote cell proliferation and cell cycle	Shao et al. (2017)
Gastric cancer	tiRNA-5034-GluTTC-2	Cell, tissue, plasma	Biomarker for diagnosis	Zhu et al. (2019)
Colorectal cancer	5'-tiRNA-Val	Cell, tissue, serum	Promote cell migration, invasion and metastasis	Li et al. (2019)
			Tao et al., 2019 Jo	urnal of Cellular Physiol

Name	ncRNA Class	Cancer Types Examined	In Vivo Experimental Techniques Used	Cancer-Related Mechanisms and/or Functions of ncRNA	References
Oncogenic ncf	RNAs				
miR-155	miRNA	lymphoma	transgenic overexpression mouse model, treatment with antimiRs	targets SHIP1 transcript, a negative regulator of AKT, to increase proliferation and survival	O'Connell et al., 2009; Babar et al., 2012; Cheng et al., 2015
HOTAIR	IncRNA	breast	siRNA knockdown, overexpression in mouse xenografts	recruits PRC2, LSD1/ CoREST/REST chromatin modifying complexes, scaffolds transcription factors at target promoters of genes involved in invasion, metastasis, and proliferation	Gupta et al., 2010; Li et al., 2016b
THOR	IncRNA	lung, melanoma	CRISPR-Cas9 knockdown, overexpression in mouse xenografts; transgenic knockout, overexpression in zebrafish	binds IGF2BP1 to stabilize interactions with oncogenic target mRNAs, in turn stabilizing those transcripts and promoting proliferation	Hosono et al., 2017
BRAFP1	pseudogene	B cell lymphoma	transgenic overexpression mouse model	acts as a ceRNA for miRNAs that target the BRAF transcript, leading to increased BRAF expression, MAPK signaling, and proliferation	Karreth et al., 2015
circCCDC66	circRNA	colorectal	siRNA knockdown in mouse xenografts	sponges several miRNAs that target oncogenic transcripts (e.g., MYC), promoting proliferation, migration, and invasion	Hsiao et al., 2017
					Slack & Chinnaiyan 2019

