

Detection of RNA-DNA hybrids

R-loop

RNA/DNA tripplex

Separation of DNA from free RNA

SPRI-size selection

DNA-IP

IP with specific RNA/DNA S9.6 Ab followed by RNAseq

Enrichment of DNA-associated RNA

- SPRI (Solid Phase Reversible Immobilization) - based paramagnetic bead size selection

- DNA-IP using anti-DNA Ab

PARS: Parallel Analysis of RNA Structure

measuring RNA structural properties by deep sequencing

- PARS confirmed for known RNA structures
- used to establish structures of > 3000 yeast transcripts
- unexpected conclusion: coding mRNA regions are more structured than UTRs!

PARS: Parallel Analysis of RNA Structure

Genome-wide Measurement of RNA Folding Energies

Molecular Cell *48*, 169–181, October 26, 2012 Yue Wan,¹ Kun Qu,^{1,8} Zhengqing Ouyang,^{1,2,8} Michael Kertesz,³ Jun Li,⁴ Robert Tibshirani,⁴ Debora L. Makino,⁵ Robert C. Nutter,⁶ Eran Segal,^{7,*} and Howard Y. Chang^{1,*}

Regulatory Impact of RNA Secondary Structure across the The Plant Cell 2012 Arabidopsis Transcriptome^{WDA}

Fan Li,^{a,b,c,1} Qi Zheng,^{a,b,1} Lee E. Vandivier,^{a,b,d} Matthew R. Willmann,^{a,b} Ying Chen,^{a,b,c} and Brian D. Gregory^{a,b,c,d,2}

CLASH (intra- and intermolecular RNA-RNA interactions)

<u>Crosslinking</u> <u>Ligation and</u> <u>Sequencing of</u> <u>Hybrids</u>

U3-18S rRNA interactions

Kudla et al., PNAS, 2011

MARIO (intra- and intermolecular RNA-RNA interactions) <u>Mapping RNA interactome in vivo</u>

- (1) cross-linking RNAs to proteins
- (2) RNA fragmentation, protein denaturing and biotinylation
- (3) immobilization of RNA-binding proteins at low density
- (4) ligation of a biotinylated RNA linker
- (5) proximity ligation under a dilute condition
- (6) RNA purification and RT
- (7) biotin pull-down
- Nguyen et al., NatComm, 2016 (8) construction of sequencing library

RNA-seq-based methods for mapping RNA structures, RNA–RNA and RNA–DNA interactions

Nguyen et al, TiG, 2018

RNA structure in vivo: SHAPE, beniceland enzymatical based structure probing SHAPE: Selective 2'- Hydroxyl Acylation and Primer Extension SHAPE-seq: SHAPE followed by RNA-seq PARIS: Psoralen Analysis of RNA Interactions and Structures SPLASH: Sequencing of Psoralen crosslinked, Ligated, and Selected Hybrids LIGR-seq: LIGation of interacting RNA followed by high-throughput Sequencing SHAPE chemicals: DMS, dimethyl sulfate: 1M7, 1-methyl-7-nitroisatoic anhydride

SHAPE <u>chemicals</u>: DMS, dimethyl sulfate; 1M7, 1-methyl-7-nitroisatoic anhydride SHAPE <u>enzymes</u>: P1 nuclease, RNases V1 and S1 PARIS/SPLASH chemicals: psoralen; AMT, 4'-aminomethyltrioxsalen

Table 1. Transcriptome-wide RNA Structure Probing Methods								
Assay	Probing Agent	Detection	In Vitro Probing	In Vivo Probing				
FragSeq	P1 nuclease	single-stranded bases	Х					
PARS	RNase V1 and S1 nuclease	paired and single- stranded regions	Х					
SHAPE-seq	1M7	single-stranded bases	Х					
mod-seq	DMS	unpaired A & C		Х				
DMS-seq	DMS	unpaired A & C	Х	х				
Structure-seq	DMS	unpaired A & C	Х	Х				
icSHAPE	NAI-N ₃	single-stranded bases		Х				
SHAPE-MaP	1M7	single-stranded or unbound bases	х	х				
PARIS	AMT	base-paired sequence partners		х				
LIGR-seq	AMT	base-paired sequence partners		х				
SPLASH	biotinylated psoralen	base-paired sequence partners		х				

PARIS SPLASH LIGR

- in vivo psoralen or AMT, intercalate into RNA duplex and generate inter-strand adducts between juxtaposed pyrimidine bases upon 365 nm UV irradiation

- ssRNAse S1 limited digest
- RNA end proximity ligation

(circRNA ligase)

- removal of uncrosslinked RNA (ss and structured RNAase R1)
- crossling reversal (254 nm)

- RNAseq

[AMT = psoralen derivative 4'aminomethyltrioxalen] and

Graveley, Mol Cell, 2016

RNA structure in vivo: SHAPE, icSHAPE

icSHAPE: click selective 2'-hydroxyl acylation and profiling

RNA-seq-based mapping of RNA structures

Sequencing based for mapping RNA structures								
Method	Advantages	Limitations						
Enzyme-based methods								
PIP-seq	 Reveals both protein-bound RNA regions and RNA secondary structure. Provides strand-specific information. 	Limited resolution at small nucleotide bulges and loops.						
PARS	 Increased sensitivity by sequencing both single- and double-stranded regions. 	RNA was folded in vitro.						
PARTE	 Measures melting temperature. Single-nucleotide resolution. Preserves <i>in vivo</i> RNA modifications. Can infer RNA regulatory motifs. 							
FragSeq	Simple and fast protocol.Accompanied with modifiable software.							
Chemical-based method	S							
DMS-seq	Identifies RNA structure in native conditions.Single-nucleotide resolution.	Limited to the analysis of two bases (As and Cs).RNA-binding proteins can block DMS activity.						
icSHAPE	Measures base flexibility.Single-nucleotide resolution.	 Limited to the analysis of relatively short (~300 nt) in vitro- transcribed RNAs. 						
Structure-seq	Single-nucleotide resolution.Applicable to both <i>in vitro</i> and <i>in vivo</i> analyses.	Limited to the analysis of two bases (As and Cs).RNA-binding proteins can block DMS activity.						
Mod-seq	Can probe structures of long RNAs <i>in vivo</i>.Single-nucleotide resolution.	• Limited to the analysis of two bases (As and Cs).						
CIRS-seq	Single-nucleotide resolution.Can identify structural requirements for RNA-binding proteins.							
SHAPE-MaP	 Can be customized for different applications. Applicable to analysis of long RNAs. Can infer structural changes of single-nucleotide and other allelic polymorphisms. 	- Length of the RNA must be at least ${\sim}150$ nt for the randomer and native workflow, and at least ${\sim}40$ nt for the small-RNA workflow.						

Nguyen et al, TiG, 2018

RNA-seq-based mapping of RNA-RNA interactions

Sequencing based for mapping RNA-RNA interactions								
CLASH	 Stringent purification conditions remove nonphysiological interactions. 	Requires prior knowledge of an RNA-binding protein.Requires a good antibody.						
hiCLIP	 Incorporation of an adaptor between two RNA molecules increases ligation efficiency and improves accuracy in sequence mapping. 	 Requires prior knowledge of an RNA-binding protein. Requires a good antibody. No <i>in vivo</i> crosslinking step may incur challenges in differentiating <i>bona fide</i> and spurious RNA attachments. 						
PARIS	Many-to-many mapping.	 4'-Aminomethyl trioxsalen (AMT) preferentially crosslinks pyrimidine bases and may introduce bias. 						
SPLASH	Improves signal-to-noise ratio by leveraging biotinylated psoralen.Many-to-many mapping.	 Psoralen preferentially crosslinks pyrimidine bases and may introduce bias. 						
LIGR-seq	 Many-to-many mapping. 	 AMT preferentially crosslinks pyrimidine bases and may introduce bias. 						
MARIO	 Many-to-many mapping. Incorporation of an adaptor between two RNA molecules increases ligation efficiency and improves accuracy in sequence mapping. Reports both between- and within-molecule interactions. 	Loses RNA duplexes that are not associated with any proteins.						
	Captures proximal regions of an RNA molecule in 3D.Reveals single-stranded regions of each RNA.							

RNA-seq-based mapping of RNA-RNA interactions

Sequencing based for mapping RNA-DNA interactions								
Method	Advantages	Limitations						
	Captures proximal regions of an RNA molecule in 3D.Reveals single-stranded regions of each RNA.							
Sequencing based for mapping RNA-DNA interactions								
ChIRP	 Tilling the entire transcript with antisense DNA. 	Limited to analyzing RNA at a time.						
CHART	 Tilling the RNase H accessible region by antisense DNA. 	Limited to analyzing RNA at a time.						
RAP	 Tilling the entire transcript with complimentary RNA. 	Limited to analyzing RNA at a time.Limited to analysis of long RNA.						
MARGI	Many-to-many mapping.Captures interaction at native conditions.	• Require a large number (10 ⁷) of cells.						
ChAR-seq	 Many-to-many mapping. Proximity ligation is performed in nuclei, which reduces nonspecific interactions. 	 Only sequencing reads that cover the entire bridge sequence are informative, reducing the number of informative reads. 						
GRID-seq	 Many-to-many mapping. Proximity ligation is performed in nuclei, which reduces nonspecific interactions. 	 The informative sequence lengths on the RNA side and the DNA side are both limited to ~20 bases, resulting in challenges in unambiguous sequence mapping. 						

Wissink et al, Nat Rev Genet, 2019

mRNA fluorescent labeling for imaging

mRNA fluorescent labeling for imaging

FISH: Fluorescent in situ hybridization

Abbaszadeh and Gavis, Methods, 2016

RNA LOCALIZATION: FISH

Complex quantification allows analysis of single-molecule gene expression, e.g. transcription/splicing in real time, RNA level in single cells. • Constitutively expressed genes are transcribed by single events separated in time; regulated genes (e.g. by SAGA) are expressed by transcriptional bursts • Transcription of functionally related constitutive genes is not coordinated (regulated post-transcriptionally or post-translationally) /Singer lab/

RNA LOCALIZATION: FISH

Multi-colored smFISH:

 Nuclear mRNAs are partially extended
 Translating mRNAs usually do not have a circular form (no interacting 5' and 3' ends)
 mRNAs in stress granules are more compacted than translating mRNAs

RNA LOCALIZATION: FRAP and FLIP

FRAP - fluorescence recovery after photobleaching FLIP - fluorescence loss in photobleaching to analyse molecule kinetics in living cells

RNA LOCALIZATION: FRAP

RNA LOCALIZATION: FRAP

- Analysis of: transcription rates
 - 3'-end formation
 - transcript release

TREAT- 3'-RNA end accumulation during turnover

Single-mRNA imaging of RNA degradation in single cells

TREAT- 3'-RNA end accumulation during turnover

real-time observation of Ago2 slicing of TREAT mRNAs

 single-mRNA imaging of RNA degradation in single cells

LINE FISH Nucleus Cytoplasm

 TREAT mRNAs are not degraded in Pbodies, also in stress

0h

DCP1- PB marker

Horvathova et al. Mol Cell, 2017

Ribosome Profiling Ribosome Mapping Ribo-seq

In vivo analysis of translating ribosomes and mRNAs

- transcript abundancy
- translation kinetics and efficiency/protein synthesis rate
- polysome occupancy profiles
- co-translational processes
- combined with RNASeqcorrelations between transcription and translation
- short and alternative ORFs

APEX and BiolD Proximity biotin-based labeling methods

Williams et al, Science, 2014; Fazal et al, Cell, 2019; Trinkle-Mulcahy, F1000Research, 2020

APEX: applications

Protein and RNA localization RNP organization- translation, granules

APEX: applications

Protein-RNA (RNP) complexes

biotin ligase* λΝ BoxB

Streptavidin AP Protease digestion and LC-MS/MS

Trinkle-Mulcahy, F1000Research, 2020

APEX: applications

Chromatin-associated protein complexes

Trinkle-Mulcahy, F1000Research, 2020

RNA MODIFICATIONS

RNA MODIFICATIONS

Modification	Method			
	Dot blot ^a			
	LC-MS/MS ^a			
	TLC ^a			
	SCARLET			
64	SELECT			
m°A	MeRIP-qPCR ^a /m ⁶ A-IP-qPCR ^a			
	m ⁶ A-seq/MeRIP-seq ^a			
	PA-m ⁶ A-seq			
	m ⁶ A-CLIP/miCLIP			
	m ⁶ A-LAIC-seq			
	LC-MS/MS ^a			
m ¹ A	m ¹ A-seq			
mA	m ¹ A-ID-seq			
	m ¹ A-MAP			
	Dot blot ^a			
	LC-MS/MS ^a			
	TLC			
m⁵C	Bisulfite sequencing ^a			
	m⁵C-RIP-seqª			
	Aza-IP			
	miCLIP			
	Dot blot			
hm⁵C	LC-MS/MS ^a			
	hMeRIP-seq			

mRNA MODIFICATIONS

RNA MODIFICATION: mRNA m⁶A

N⁶-methyladenosine:

- in eukaryotic mRNAs and IncRNAs (discovered in 1970s)
- reversible, conserved
- writers:

methyltransferase METTL3 or METTL4-METTL14 complex with WTAP (yeast Mum2) in a [G/A/U][G>A]m6AC[U>A>C] context

- erasers: demethylases FTO and ALKBH5; readers: YTHDFXx
- occurrence 0.1–0.4% of As in mammals (~3–5 m⁶A sites per mRNA)

memymansierase	3				
S. cerevisiae Ime4	DPA	AW	SAM	-bi	nding
Human METTL3		DPF	PW	SA	M-binding
Human METTL14					
Coiled-coil EPPL S	БАМ-Ь	indin	9		
			G-rich		
demethylases Human ALKBH5 Coiled-coil A-rich					
Human FTO		(C-termin	nal	domain

METTI 14

FUNCTIONS of m⁶A

A Splicing

Immune tolerance

Dominissini at al, Nat.Rev.Genet., 2014; Pan, TiBS, 2013

FUNCTIONS of mRNA m⁶A

Readers (or anti-readers): YTHDF2 family preferentially recognize m⁶A RNA m⁶A can be also read by hnRNPs

- Regulation of mRNA stability
 and localization
- circadian clock

- inhibition of m6A leads to prolonged nuclear retention of circadian mRNAs and delays their nuclear exit

- cell cycle
- meiosis in yeast in nitrogen starvation
- development and differentiation
- in embryonic stem cells (mESCs)

Dominissini at al, Nat.Rev.Genet., 2014

m⁶A and mRNA STABILITY

FUNCTIONS of m⁶A: pri-miRNA PROCESSING

- m⁶A is present in pri-miRNA regions
- METTL3 modulates miRNA expression level
- METTL3 targets pri-miRNAs for m⁶A methylation
- m⁶A in pri-miRNA is required for normal processing by DGCR8
- HNRNPA2B1 RNA-binding protein recognizes m⁶A sites
- HNRNPA2B1 nuclear reader recruits Microprocessor

FUNCTIONS of m⁶A: mRNA SPLICING

FUNCTIONS of m⁶A: TRANSLATION

- m⁶A in 5' UTR promotes cap-independent translation
- m⁶A in 5' UTR upregulates translation
- cellular stresses increase m⁶A in 5' UTRs
- YTHDF2 in heat shock induces m⁶A-dependent translation of HS mRNAs
- m⁶A in mRNA body disrupts tRNA selection and translation elongation dynamics
- m⁶A in 3' UTR or near stop codon contributes to alternative polyadenylation

FUNCTIONS of m⁶A: RNAPII and TRANSLATION

Slobodin et al, Cell, 2017

RNA MODIFICATION: mRNA m¹A

N¹-methyladenosine m¹A:

• in eukaryotic mRNAs (from yeasts to mammals)

modified by TRMT6/TRMT61A (nuclear) or TRMT61B, TRMT10C (mitochondrial)

Li at al, Mol Cell 2017

Dominissini et al, Nature 2017

- widespread (20% in humans)
- enriched around the start codon upstream of the first splice site
- preferentially in more structured regions around translation initiation sites
- is dynamic in response to different conditions
- promotes translation

Safra et al, Nature 2017

- in cytosol low in few mRNAs
- in tRNA T-loop like structures
- present also in mitochondria
- leads to translational repression
- is disruptive to W-C basepairing
- generally avoided by cells
- at mRNA cap and 5' UTR increases translation
- prevalent in mitochondrial-encoded transcripts inhibits translation
- in different mRNA regions differentially impacts translation

FUNCTIONS of m⁵C

- synthesized by TRM4B methyltransferase
- enriched in the CG context and in downstream of translation initiation sites
- present in mRNAs and ncRNAs, also tRNAs
- tissue specific, acts as a epitranscriptome marker
- mRNA export: NSUN2 as the methyltransferase and ALYREF as an m⁵C reader

RNA MODIFICATION: internal RNA m⁷G

- specific miRNAs are m⁷G-modified by METTL1
- m⁷G promotes miRNA processing by antagonizing G4 in pre-miRNAs (G4 inhibit pre-miRNA processing)
- human mRNAs contain internal m⁷Gs
- some m⁷Gs are introduced by METTL1
- internal m⁷G affect translation

Zhang et al, 2019, MCell

RNA MODIFICATION: mRNA, IncRNA pseudoU

mRNA pseudouridylation

- changes mRNA structure
- facilitates recoding by the ribosome
- stimulates translation
- when added cotranscriptionally affects splicing

No heat

Heat shock

RNA MODIFICATION: alternative caps

NAD⁺ RNA cap

- Found in bacteria (2009), S. cerevisiae (2017), mammalian cells (2017, plants (2019)
- Added cotranscriptionally by RNAP or posttranscriptinally
- Targets mRNA for degradation in eukaryotes, stabilizes mRNA in bacteria
- Hydrolyzed by specific enzymes (DXO and NUDT families)
- NAD⁺ capped RNAs constitute only 1-5% of total RNAs
- NAD⁺ capped RNAs are more abundant in mitochondria (15% in humans, 60% in yeast)
- NAD⁺ capped RNAs are present on polysomes
- NAD⁺ cap supports translation?

ALTERNATIVE POLYMERASES

OLIGO-URIDYLATION

3' oligouridylation

1. Histone mRNA degradation (metazoans)

OLIGO-URIDYLATION

Histone mRNA degradation (metazoans)

Scheer et al, TiG., 2016

Krol et al., Nat Rev Genet, 2010; Kim et al., Cell, 2010

OLIGO-URIDYLATION

mRNA degradation

OLIGO-URIDYLATION

Other

URIDYLATION

Uridylation-dependet mRNA decay

Uridylation of pre-miRNAs and miRNAs

Degradation of histone mRNAs

Lee et al, Cell, 2014

uORFs = upstream ORFs

Wethmar WIREsRNA, 2014

(a) Integration of global translational conditions

(E) Ribosome shunting

small ORFs = sORFs, sPEPs, smORF

Bioinformatics approaches Sequence composition analysis Conservation **Biochemical approaches**

Ribosome profiling

100%

Kelative intensity 20%

25%

0% 0

200

400

600

800

1000

Methods to identify sORFs and sPEPs

Genome-wide discovery of SEPs

Integrative repositories for SEPs

http://www.sorfs.org

Multispecies

Query interface: simple, advanced (BioMart), genome browser

Contains: I: PROTEOFORMER IIa: FLOSS, ORFScore IIb: PhyloCSF, PhyloP, PhastCons IIc: global PRIDE-ReSpin IIIa: NCBI dbSNP IIIb: InterPro, Pfam, sLiMs, ELM (future) IIIc: NCBI BLAST

http://www.bioinfo.ibp.ac.cn/SmProt/

Multispecies

Query interface: simple, genome browser, BLAST

Contains: I: RiboTaper IIa: IIb: PhyloCSF (partly from Mackowiak et al. 2015) IIc: specific MS/MS data sets IIIa: IIIb: InterPro IIIc: BLAST search is available

http://www.biw.kuleuven.be/CSB/ARA-PEPs/

ARA-PEPs	Datasets -	JBrovie 1.120	Q BLAST	About us	110	±Counted	@ Contact
HOME Q. BENRCH papelles							
Search biotic/abiotic stress-induced	Transcripti	ionally-Active I	Regions(T	ARs):			
Customize your query ity selecting at least one opt	lons						
Thing Armyn (righted ratio) the highwell \$10							
RNA-Seq (FFRMs) the highest 8 10							
all TAYs expressed in both Tiling Arrays & PBA	Seq experim	ente					
AND							
Olivamosome:							
Chromosome starts 10000000							
Chromosome stop: 20000000	et Dear						

Arabidopsis thaliana

Query interface: simple, genome browser, BLAST

Contains: I: sORF finder or tiling arrays IIa: IIb: dN/dS ratio IIc: IIIa: IIIb: TM domain, signal sequence IIIc: BLAST search is available

	ORF	lass	RNA t	уре	Median (codons	size) Translation ¹⁵	Conservation	Coding features	Function	
	Interg ORFs	enic	None	-	22	None	None ^{6,8}	Non-canonical AA	None	SORFS
	uORFs	-	5' UTR	s of mRN/	As 22 →	Low	None ^{8,30}	Nonrandom AANo domains	 Non-coding Translation regulation 	
	lncOR	Fs	lncRN/	As	≥4	Low	None ^{8,10}	Nonrandom AANo domains	Non-coding or coding	
	Short CDSs	-	Short	mRNAs	79 ➔	High	Class	 Positively charged AA Transmembrane α-helices 	 Coding Regulators of canonical proteins 	
	Short isoforr	ns _	Splice	d mRNAs	79	High	Kingdom	 Canonical AA Protein domain loss 	 Coding Small interfering peptides 	
	Canor ORFs	nical -	mRNA	5	491 ►	High	Kingdom	 Canonical AA Multiple protein domains 	 Coding⁴² Structural, enzymatic, regulatory 	
Untranslated region → DNA ∧ RNA splicing ORFs Other coding sequences Ribosome profiling signal										
						а	Drosophila m	elanogaster Mus mu	sculus	Homo sapiens
						18,	328	Annotated DRFs 828	855	50,270
Μ	edian	leng	th (co	odons)						1,207
u	ORFs	lncO	RFs C	Short CDSs	Canonical ORFs		16,904	¹ 20,430 (128,30	7 31,954	43,206
20	D	25	7	79	490	D. melanogaster		×	520	172,115
22	2	23	8	31	424	M. musculus			1520	1651
23	3	24	7	78	421	H. sapiens				1,051
	_						Intergenic 635,402	ORFs: Interge 24,119,	nic ORFs: 916	Intergenic ORFs: 21,369,201
C N	Couso Nat Re	and I v Mo	Patrao I Cell	quim Biol, 20	17		uOR) O O Fs IncORFs Short CD	OSs Short isoforms	Canonical ORFs

SUMMARY or HOW TO PASS THE EXAM?

- THEORY
- METHODS
- GENERAL IDEAS, CONCEPTS, SOLUTIONS
- PATHWAYS
- MECHANISMS

