All RNAs great and small

Institute of Genetics and Biotechnology University of Warsaw

lecture 3

RNA enzymes and complexes RNA granules RNA decay

RNA enzymes and complexes

RNA processing and decay machinery: RNases

Protein	Function	Characteristics
Exonucleases	<u>5'→3'</u>	
Xrn1	cytoplasmic, mRNA degradation	processsive
Rat1/XRN2	nuclear, pre-rRNA, sn/snoRNA, pre-mRNA processing and	degradation
Rrp17/hNOL12	nuclear, pre-rRNA processing	
Exosome 3'->	<u>5'</u> multisubunit exo/endo complex	subunits organized as in bacterial PNPase
Rrp44/Dis3	catalytic subunit	Exo/PIN domains, processsive
Rrp4, Rrp40	pre-rRNA, sn/snoRNA processing, mRNA degradation	-
Rrp41-43, 45-46	participates in NMD, ARE-dependent, non-stop decay	
Mtr3, Ski4		
Mtr4	nuclear helicase cofactor	DEAD box
Rrp6 (Rrp47)	nuclear exonuclease (Rrp6 BP, cofactor)	RNAse D homolog, processsive
Ski2,3,7,8	cytoplasmic exosome cofactors. SKI complex	helicase, GTPase
<u>Other 3'→5' ar</u>	<u>nd 5'→3'</u>	
Rex1-4	3'-5' exonucleases, rRNA, snoRNA, tRNA processing	RNase D homolog
DXO	5'-3' exonuclease in addition to decapping	
ERI1	3'-5' exonuclease, rRNA processing, histone mRNA decay	
<u>mtEXO 3'→5'</u>	mitochondrial degradosome RNA degradation in yeast	
Suv3/ Dss1	helicase/ 3'-5' exonuclease	DExH box/ RNase II homolog
Deadenylation		
Ccr4/NOT/Pop2	major deadenylase complex (Ccr, Caf, Pop, Not proteins)	Ccr4- Mg ²⁺ dependent endonuclease
Pan2p/Pan3	additional deadenylases (poliA tail length)	RNase D homolog, poly(A) specific nucleas
PARN	mammalian deadenylase	RNase D homolog, poly(A) specific nucleas
Endonucleases	<u>}</u>	
RNase III		
-Rnt1	pre-rRNA, sn/snoRNA processing, mRNA degradation	dsRNA specific
-Dicer, Drosha	siRNA/miRNA biogenesis, functions in RNAi	PAZ, RNA BD, RNase III domains
Ago2 Slicer	mRNA cleavage in RNAi	
SMG6	mRNA cleavage in NMD	PIN domain
RNase P	5' tRNA end processing	RNP complex
RNase MRP	pre-rRNA processing	RNP complex, similar to RNase P
RNase L	rRNA degradation in apoptosis	oligo 2-5A dependent (ppp(A2'p) _n A)
ELAC2/Trz1	3' tRNA endonuclease	PDE motif and Zn ²⁺ -binding motif
Utp24 Nob1 Las1	pre-rRNA processing at sites A0, D and C2	

Eukaryotic auxiliary decay factors

Protein

Function / Characteristics

<u>5'→3' decay: decapping</u>

Dcp1/Dcp2	Dcp2- pyrophosphatase catalytic activity, Nudix domain, Dcp1- protein binding
Hedls/Ge-1/Edc4	decapping cofactor, WD40 domain
Edc1,2,3	decapping enhancers, stimulate cap binding/catalysis, Edc1-2 (yeast), Edc3 (all eykaryotes)
Dhh1	DexD/H ATPase, decapping activator by translation repression
Lsm1-7	decapping activator, heptameric complex, binds mRNA 3' end-U rich tracts
Pat1	decapping activator by translation repressio
DXO	pyrophoshohydrolase, 5' decapping endonuclease, deNADding, 5'OH hydrolase

TRAMP complex: exosome cofactors, nuclear RNA QC, polyadenylation-dependent degradation,

Trf4/Trf5 (hTRF4-2)	nuclear alternative poly(A) polymerases
Mtr4 (hMTR4)	DEAD box helicase
Air1/Air2 (ZCCHC7)	RNA binding proteins

NEXT and PAXT complexes: exosome cofactors, nuclear RNA QC

hMTR4	DEAD box helicase
RMB7/ZCCHC8	NEXT RNA binding proteins
ZFC3H1	PAXT RNA binding protein
PABPN1	PAXT nuclear polyA binding protein

Nrd1-Nab3-Sen1 complex: PollI termination of ncRNAs, TRAMP-depdendent degradation

Nrd1	Pol II C-terminal domain (CTD) binding, RNA binding
Nab3	RNA binding
Sen1	RNA helicase

CBCA-NEXT, CBCA-PAXT and RESTRICTOR complexes: nuclear RNA QC

CBC CBCA	nuclear cap binding complex
ARS2	RNA binding, Pol II transcription, termination, RNA decay
ZC3H18	NEXT, zinc finger protein
ZFCH1	PAXT nuclear polyA binding protein
ZC3H4, WDR82	RESTRICTOR Pol II termination, RNA Decay by NEXT and exosome complexes

EXOSOME: 3'→5' decay machinery

- 10 core components (RNA BP)
- catalytically active exo hydrolytic Dis3/Rrp44 (RNase II)
- PIN domain with endo activity
- nuclear cofactors- RNA BP Rrp47, nuclease Rrp6 (RNase D), RNA helicase Mtr4
- cytoplasmic cofactors- Ski2-3-8 complex (RNA helicase Ski2), GTPase Ski7
- subtrates- processing and/or degradation of almost all RNAs

EXOSOME: 3'→ 5' decay machinery: functions

NUCLEAR: Rrp6 and core components have partly separate functions

- 3' -end processing of 5.8S rRNA, sn/snoRNAs, tRNAs, SRP RNA
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of other ncRNAs: CUTs, PROMPTS

CYTOPLASMIC:

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay, ARE-dependent decay

EXOSOME: 3'→5' decay machinery

- 3' -> 5' exo/endo nuclease complex
- 10 core components (RNA BP)
- catalytically active exo hydrolytic Dis3/Rrp44 (RNase II)
- PIN domain with endo activity
- nuclear cofactors- RNA BP Rrp47, nuclease Rrp6 (RNase D), RNA helicase Mtr4
- cytoplasmic cofactors- Ski2-3-8 complex (RNA helicase Ski2), GTPase Ski7
- subtrates- processing and/or degradation of almost all RNAs

EXOSOME: 3'→ 5' decay machinery: functions

NUCLEAR: Rrp6 and core components have partly separate functions

- 3' -end processing of 5.8S rRNA, sn/snoRNAs, tRNAs, SRP RNA
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of other ncRNAs: CUTs, PROMPTS

CYTOPLASMIC:

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay, ARE-dependent decay

Polyadenylation-mediated nuclear discard pathway for defective RNAs

- hypomodified tRNAs, pre-tRNAs
- ncRNAs:
 - sn/snoRNAs, rRNAs

CUTs (Cryptic Unstable Transcripts)

• some mRNAs

TRAMP interacts with

- exosome via Mtr4
- Nrd1/Nab3/Sen1 complex

LaCava et al., Cell, 2005; Vanacova et al., PLoS Biol. 2005; Wyers et al., Cell, 2005; Lubas et al. Mol. Cell, 2011

TRAMP + Exosome = nuclear RNA surveillance

<u>Mtr4</u> – DEAH box RNA helicase Air1/2 – RNA binding proteins Trf4/5 – poly(A) polymerases

Substrate specificity conferred by Trf4/5 Ai1/2 are highly redundant

SUBSTRATES TRAMP 4-2: mRNA, ncRNA

TRAMP 4-1: mRNA, introns

TRAMP 5-1: pre-rRNA

TRAMP

- interacts with the exosome via Mtr4 role in degradation
- role in sn/snoRNA 3' end processing together with the exosome
- interacts with Nrd1/Nab3 complex role in ncRNA Pol II termination
- role in transcription silencing in S. cerevisiae and S. pombe (Cid14)

NEXT and PAXT - exosome cofactors

• ZFC3H1 (Zn-knuckle protein) links MTR4 with PABPN1 in PAXT

- ZFC3H1/PABPN1 and RBM7/ZCCHC8 interact with MTR4 in a mutually exclusive manner
- PAXT and NEXT direct distinct RNA species for nuclear exosome degradation
- PAXT targets tend to be longer and more extensively polyadenylated than NEXT targets

mammals

MTR4- associated complexes

EXOSOME with TRAMP, NEXT and PAXT

Schmid and Jensen., Nat. Rev. Mol. Cel. Biol., 2018

EXOSOME with TRAMP, NEXT and PAXT

XRN family: $5' \rightarrow 3'$ processive exonucleases

Kastenmayer and Green, 2000, PNAS

NUCLEAR Rat1/XRN2

with Rai1 activator (5' -ppp pyrophosphohydrolase and phoshodiesterase-decapping nuclease)

- 5' -end processing of 5.8S and 25S rRNAs, snoRNAs
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of some ncRNAs: CUTs
- transcription termination of Pol I and II (torpedo mechanism)

CYTOPLASMIC XRN1

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay,

ARE-dependent decay

Crystal structure of S. pombe

Rat1/Rai1 complex

- degradation of miRNA-dependent mRNA cleavage products (in plants)
- degradation of some ncRNAs: CUTs, SUTs, XUTs

XRN1 and Rat1/XRN2 have deNADding and deFADding activity

Xiang et al, 2009, Nature

DCP/NUDT- decapping enzymes

<u>Dcp1/Dcp2</u> complex participates in mRNA 5' decay

- catalyses the reaction m⁷GpppX-mRNA -> m⁷GDP + 5'p-mRNA
- Dcp2 is the catalytic subunit (pyrophosphatase Nudix domain)
- Dcp1 is required for activity *in vivo*, interacts with other proteins

Dcp2

(yeast Lsm1-7, Dhh1, Pat1, Edc1-3, Upf1-3)

Base 1

O(CH₃)

Dcp1/Dcp2p is regulated by Pab1 and activating factors

She et al. Nat.Struct. Mol. Biol, 2004

Wang et al. PNAS, 2002

<u>NUDT</u> proteins (22):

in vivo decapping Nudt16, Nudt3 (mammals) *in vivo* deNADding Nudt12 (mammals)

- <u>DcpS</u>: HIT pyrophosphatase ("histidine triad" on the C-terminus)
- catalyses the cleavage of m⁷GDP -> m⁷GMP + Pi remaining after decapping during mRNA 5' decay
- cooperates with the exosome during mRNA 3' decay
- (m⁷GpppX-oligoRNA -> m⁷GMP+ pp-oligoRNA)
- functions as an asymmetric dimer

ŃH2

LSM proteins

Achsel et al, EMBO J, 2001

Involved in pre-mRNA splicing

- associates with U6 snRNA
- required for U6 RNA accumulation and U6 snRNP biogenesis
- interacts with the U4/U6.U5 tri-snRNP

Functions in mRNA decapping and decay

- activator of decapping
- interacts with components of the mRNA decapping and degradation machinery (XRN, DCP, Pat1)

NNS-TRAMP-exosome snR65 gene T1 Nrd1/Nab3 T2 Poly(A) site Recruitment of biding sites the NNS complex Phosphorylated Ser5 Rnt1 II site Rnt1 I site CID Rnt1 II site DNA Rnt1 I site Nrd1- and Nab3-binding sites ΑΑΑΑΑΑΑΑΑΑ Т2 Poruua, Libri, Nat Rev Mol Cell Biol, 2015 sn/snoRNA processing CBC (yeast) Pol II T2 Rnt1 T1 TRAMP Exosome Sylwia Szczepaniak, PhD thesis

INTEGRATOR

- recruited contransctiptionaly to snRNA promoter
- interacts with Pol II CTD (Ser7-P/Ser2-P dyad)
- cleaves pre-snRNA at 3'box (endonuclease Int11)
- involved in transcription termination at snRNA genes
- contributes to transcription termination at mRNA genes (intronless in particular)
- promotes transcription elongation by nascent transcript cleavage (Polll release)

CYTOPLASMIC XRN1

Xiang et al, 2009, Nature

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay,

ARE-dependent decay

- degradation of miRNA-dependent mRNA cleavage products (in plants)
- degradation of some ncRNAs: CUTs, SUTs, XUTs

Yeast Rat1 and Xrn1 have also deNADding activity

DCP/NUDT- decapping enzymes

<u>Dcp1/Dcp2</u> complex participates in mRNA 5' decay

- catalyses the reaction m⁷GpppX-mRNA -> m⁷GDP + 5'p-mRNA
- Dcp2 is the catalytic subunit (pyrophosphatase Nudix domain)
- Dcp1 is required for activity *in vivo*, interacts with other proteins

Dcp2

(yeast Lsm1-7, Dhh1, Pat1, Edc1-3, Upf1-3)

Base 1

O(CH₃)

 \cdot Dcp1/Dcp2p is regulated by Pab1 and activating factors

She et al. Nat.Struct. Mol. Biol, 2004

Wang et al. PNAS, 2002

<u>NUDT</u> proteins (22):

in vivo decapping Nudt16, Nudt3 (mammals) *in vivo* deNADding Nudt12 (mammals)

- <u>DcpS</u>: HIT pyrophosphatase ("histidine triad" on the C-terminus)
- catalyses the cleavage of m⁷GDP -> m⁷GMP + Pi remaining after decapping during mRNA 5' decay
- $\boldsymbol{\cdot}$ cooperates with the exosome during mRNA 3' decay
- (m⁷GpppX-oligoRNA -> m⁷GMP+ pp-oligoRNA)
- functions as an asymmetric dimer

ŃH2

DXO/Rai1 family **Cellular activities** cap surveillance deNADding deNADding pyrophosphohydrolase 5'-3' exonuclease Α nuclease decapping nuclease NppA pppN DXO/Rai1 DXO/Rai1 NUDIX Capping pppN NODA XRNs DXO/Rai1 DXC GpppN GpppN Cap XRNs methylation DXO m⁷GpppN DXO m⁷GpppN DCP2

m⁷Gpo

ACTIVITY	SUBSTRATE	MmDXO	At DXO1
5'-3' exoribonuclease	p-RNA	++++	+
Pyrophosphohydrolase	ppp-RNA	+++	-
Decapping (unmethylated cap)	Gppp-RNA	+++	-
Decapping (mature cap)	m ⁷ Gppp-RNA	+++	-
DeNADding	NppA-RNA	++++	+++

Additional activities: - 5' OH RNA hydrolase

- FAD and CoA decapping nuclease

A. Kwaśnik, PhD thesis, 2019

ACTIVITY	SUBSTRATE	MmDXO	At DXO1
5'-3' exoribonuclease	p-RNA	++++	+
Pyrophosphohydrolase	ppp-RNA	+++	-
Decapping (unmethylated cap)	Gppp-RNA	+++	-
Decapping (mature cap)	m ⁷ Gppp-RNA	+++	-
DeNADding	NppA-RNA	++++	+++

Additional activities:

- 5' OH RNA hydrolase

- FAD and CoA decapping nuclease

A. Kwaśnik, PhD thesis, 2019

RNP granule assembly

by protein-protein and RNA-RNA interactions Assembly promoted by:

- Longer RNA length
- High local concentrations
- RNAs with increased ability to interact
- Multivalent RNA-binding proteins

Entropy

Treeck and Parker, Cell, 2018 Verdile et al, Front Genet, 2019

Energy

Phase transition Droplets, MLOs (Membraneless Organelles) Liquid-Liquid Phase Separation (LLPS)

Formed by unstructured protein domains around RNAs

IDR - Intrinsic Disordered Domains *PLD* - Prion-Like Domains

Organize several cellular processes:

- Heterochromatin structure (HP1)
- Transcription (Mediator, Pol II CTD)
- Processing (nucleolus, spliceosome, SR proteins, Cajal bodies)
- RNA retention and storage (Nuclear speckles, Paraspeckles, P-bodies, Stress Granules)
- RNA decay (degradosome)
- Protein modificarion and degradation (autophagosome, proteasome)

Membraneless Organelles

Verdile et al, Front Genet, 2019

Cellular Condensates

Banani et al, Nat Rev Cell Mol Biol, 2017

Wegener and Müller-McNicoll, Sem Cell Dev Biol 2018

Cajal bodies

Cytoplasmic P-bodies and Stress Granules

SG: global translation halts upon stress, mRNAs bound to the translational machinery and other proteins form SGs.

PB: translationally stalled mRNAs devoid of initiation factors shuttle to PBs.

Dynamic biomolecular condensates Form by phase separation of RNAs and proteins Role in translational control and proteome buffering upon translational arrest (PB) and stress (SG)

SG Stress Granules

Translation in SGs

- nontranslating mRNAs are preferentially recruited to SGs
- mRNAs in SGs can undergo translation (complete cycle)
- translating mRNAs can enter, leave, or stably localize to SGs
- translation in SGs mainly, but not only, occurs on mRNAs enhanced under stress (shown using single-molecule mRNA imaging, SunTag)

mRNA STABILITY

Elements *in cis*:

mRNA general decay in the cytoplasm

mRNA degradation in the cytoplasm

mRNA degradation in the cytoplasm

 $DEADENYLATION \longrightarrow RELEASE OF RIBOSOMES \longrightarrow RELEASE OF TRANSLATION FACTORS$ $\longrightarrow RECRUITMENT OF DECAY FACTORS \longrightarrow RNA DECAY$

mRNA 3'-5' decay

nuclear exosome (3'-5' exonuclease)

Lsm2-8p complex (stimulates decapping)

Rat1p and cofactors (5'-3'exonuclease)

TRAMP (exosome cofactor)

mRNA retention at gene locus

nuclear exosome (3'-5' exonuclease)

Sac3/Thp1/Sus1 complex (mRNP components)

anchoring of mRNP

RNA decay in the nucleus

Unspliced pre-mRNAs 3'-end unprocessed pre-mRNAs **Unpackaged mRNAs** (wrong mRNPs) mRNAs retained in the nucleus (export defect) **Transcripts retained at chromatin** Aberrant ncRNAs Unmodified tRNAs **Excessive rRNAs and tRNAs**

Schmid and Jensen, Chromosoma., 2008

mRNA quality control decay in the cytoplasm

NMD – Nonsense Mediated Decay (mRNAs with premature STOP codon)

- **NGD No-Go Decay** (ribosome stuck on an obstacle)
- **NSD** Non-Stop Decay (mRNAs with no STOP codon)

Problems with a stalling ribosome during translation

(A) Improper termination

rRNA surveillance

NRD- Nonfunctional rRNA Decay

Mature aberrant ribosomes are eliminated in the cytoplasm

Mms1, Rtt101subunits of E3 ubiquitin ligase complex

Dom34::Hbs1 factors involved in NGD and NSD

185 NRD

Ribosome stalling due to decoding error Recognition of the stalled ribosome

Ribosome ubiquitination

K212 of RPS3 is monoubiquitinated by Mag2 followed by polyubiquitination by Hel2 or Rsp5

Ribosome dissociation

Subunit dissociation by the Ski2-like RNA helicase Slh1 in the RQT complex

18s rRNA degradation

by Xrn1 or exosome

Factors involved in 18S NRD are also involved in RQC

rRNA SURVEILLANCE

2. Fap1 senses individual stalled 80S ribosomes

185 NRD

- detects non functional ribosomes (mutation in decoding center 18S rRNA)
- or stalled monosomes
- stalled ribosomes recognized by Mag2
 E3 ligase, RPS3 monoUb Fap1 E3 ligase,
 RPS3 polyUb
- non-functional ribsomes are degraded

RQC

- detects collided ribosomes
- stalled disome recognized by Hel2 E3 ligase, RPS10 polyUb
- ribosomes are released and recycled

Brandman and Hegde, NatStrMolBiol 2016; Sitron and Brandman, AnnRevBiochem, 2020; Kim and Zaher TiBS, 2021

Ribosome stalling and collision

Sitron and Brandman, AnnRevBiochem, 2020

Ribosome stalling leads to ribosome collision recognized by the E3 Ub ligase Hel2/ZNF589 that ubiquitinates ribosomal proteins (uS10, eS19, uS3)

RIBOSOME QC (RQC)

Inada, NAR.,2020

RQC pathway

Vind et al, NAR, 2020

(uS10, eS19, uS3)

RQC mechanism

Dom34-Hbs1-Rli1 or Hel2-Asc1-Slh1

facilitate subunit dissociation of stalled ribosomes **RQC proteins assemble on 60S**

- Ltn1 Ub ligase ubiquitinates the nascent peptide
- Rqc2, Cdc48 and cofactors remove nascent peptide for proteasomal degradation
 -Alternative pathways: via addition of CAT-tail (Ala and Thr extension)

CATylation

The canonical RQC is preferred but if ubiquitylation of the nascent polypeptide fails, CAT tail is added by Rqc2 to extract the trapped polypeptide <u>CATylation</u> results in - Ltn1-dependent degradation

- of aberrant proteins
- nascent chain aggregation
- activation of stress signaling
- nascent chain proteolysis

RQC mechanism

Co-translational protein and mRNA QC

Co-translational QC

NEXT LECTURE:

Global analyses of RNAs and RNPs