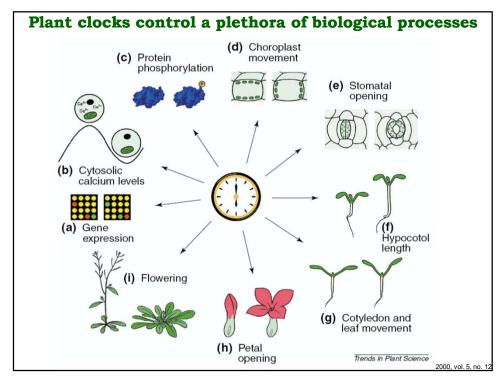

Involvement of RNA metabolism in physiological processes: development and response to stress

dr Anna Golisz-Mocydlarz

1

Levels of regulation

- I. Chromatin and transcription
- II. RNA processing: pre-mRNA splicing(alternative splicing AS) and3' formation
- III. RNA stability
- IV. Regulation via microRNA and lncRNA



Regulation of plant metabolism

I. Chromatin and transcription

RNA metabolism regulates most of developmental and signaling processes in plants

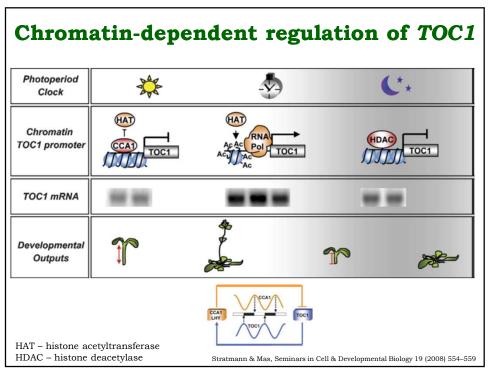
- ► Germination
- ► Circadian clock
- ► Transition from vegetative to generative development
- ▶ Flowering
- ► Stress response

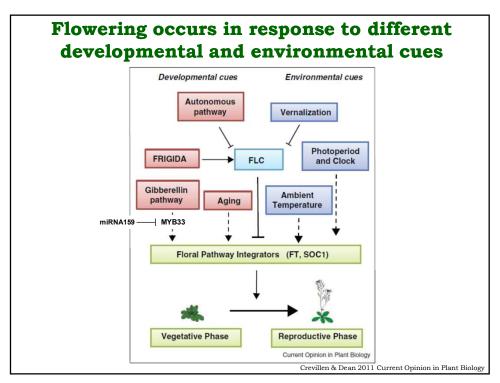
The central oscillator

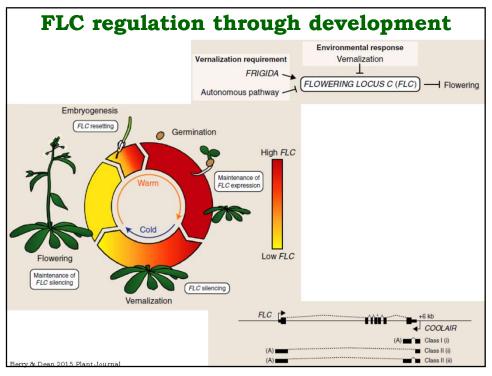
1) CCA1 - CIRCADIAN CLOCK ASSOCIATED 1 LHY - LATE ELONGATED HYPOCOTYL

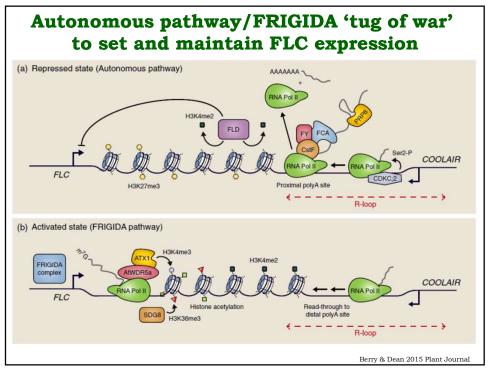
- MYB transcription factors
- ❖ reduction in mRNA levels: negative feedback loop
- mRNA level peaking at dawn

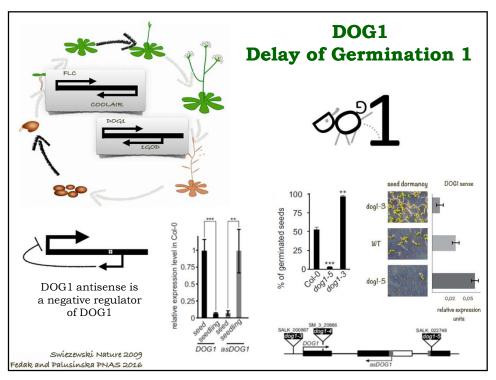
2) TOC1 - TIMING OF CAB EXPRESSION 1

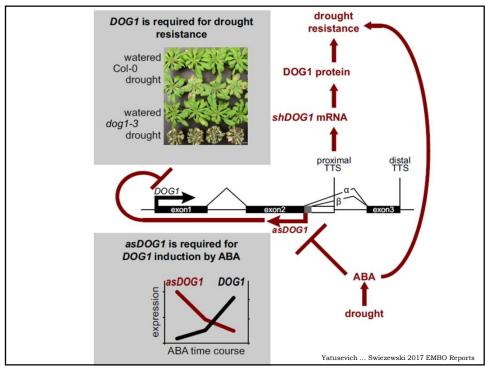

* TOC1 expression oscillates peaking during early evening (opposite to CCA1 and LHY)

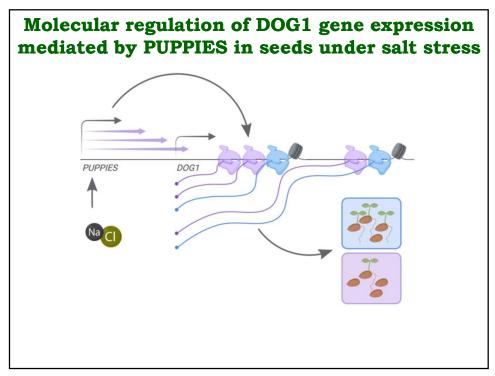

CCA1

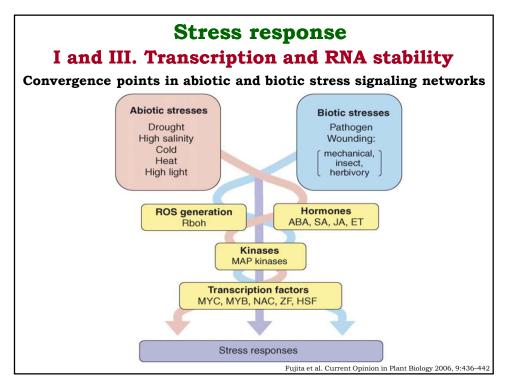

LHY

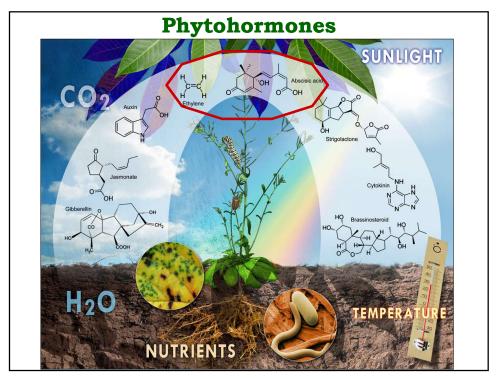

TOC1

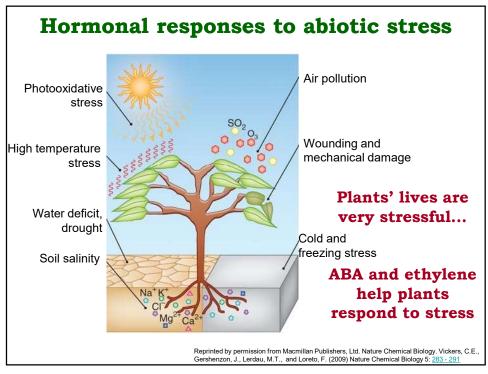

Stratmann & Mas, Seminars in Cell & Developmental Biology (2008) 554–559

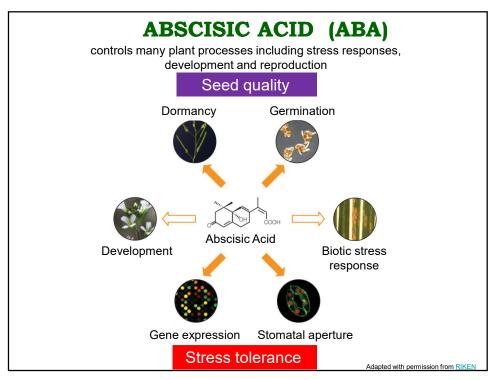


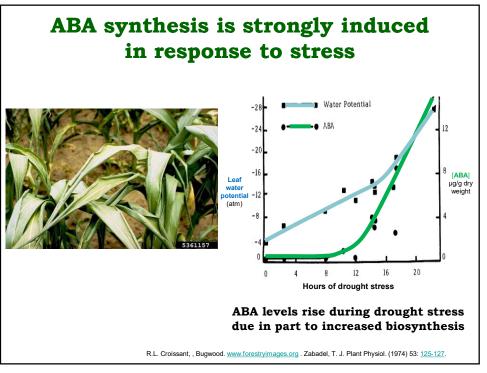


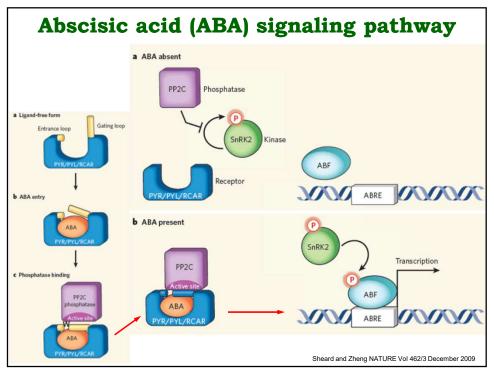


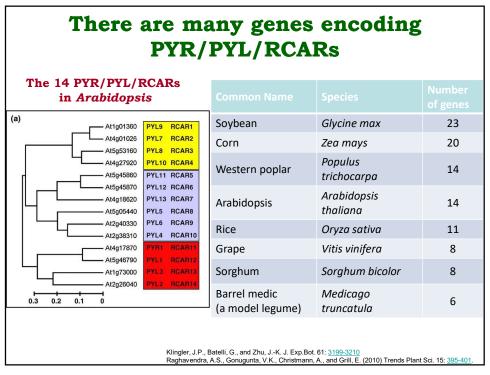


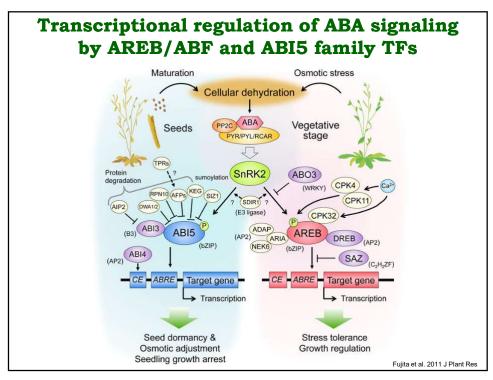


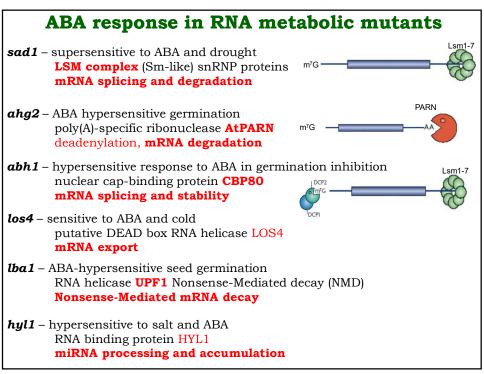


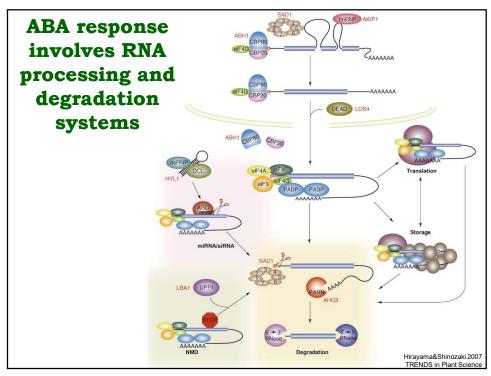


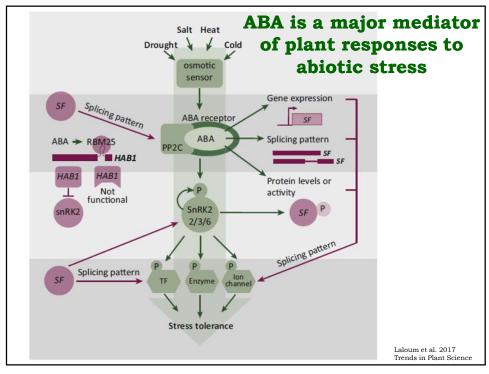


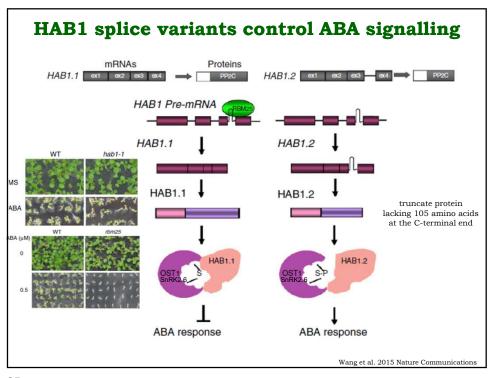


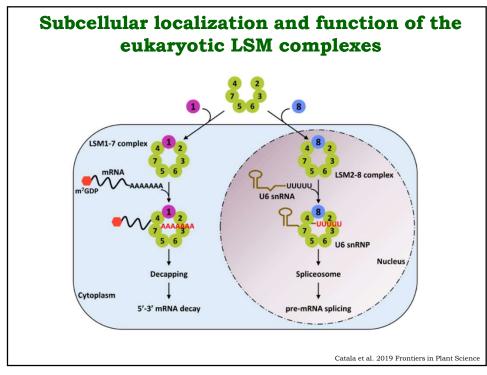


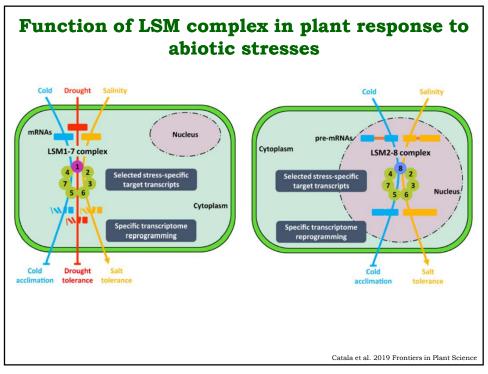










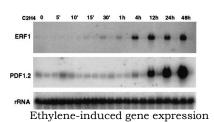


		re	spons	es			
Splicing factor		Abiotic stress under which an in vivo role was reported ^a					
		ABA	Drought	Salt	Cold	Heat	Cadmium
SR proteins	SR45	-	X	Х	X	X	X
	SR34b	X	X	X	X	X	~
	RS40	-	X	~	X	X	X
	RS41	-	X	~	X	X	X
GRPs	GRP2	X	-	X	X	X	X
	GRP7	X	~	~	-	X	X
	RZ-1a	-	~	~	X	X	X
CBPs	CBP20	-	~	~	X	X	X
	CBP80/ABH1	-	~	~	X	X	X
Spliceosome	SKIP	X	~	~	X	X	X
components	SAD1	-	~	-	X	X	X
	LSm4	-	X	~	X	X	X
	RDM16	-	X	-	X	X	X
	STA1	-	-	-	-	-	X
	RBM25	<u></u>	~	-	X	X	X

Ethylene (C_2H_4) is a gaseous hormone with diverse actions

Ethylene regulates:

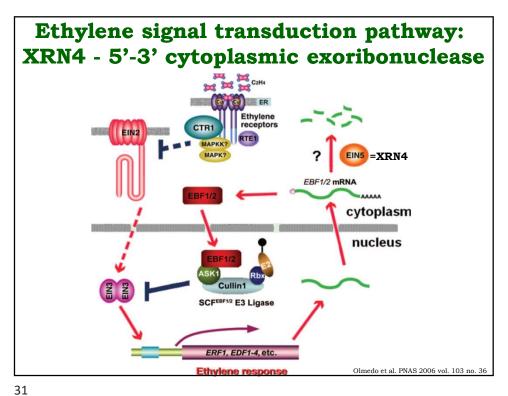
- fruit ripening
- organ expansion
- senescence
- gene expression
- stress responses


Beyer, Jr., E.M. (1976) Plant Physiol. 58: <u>268-271</u>.

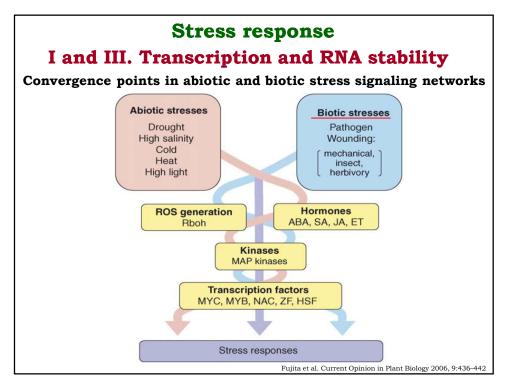
29

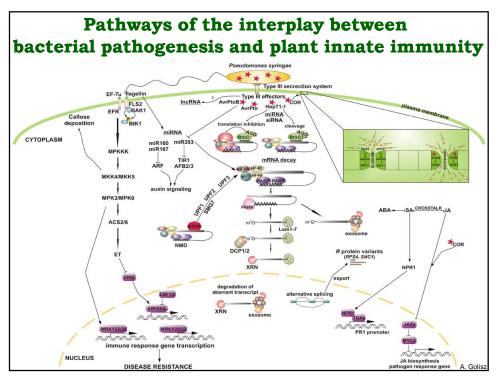
Ethylene responses in Arabidopsis

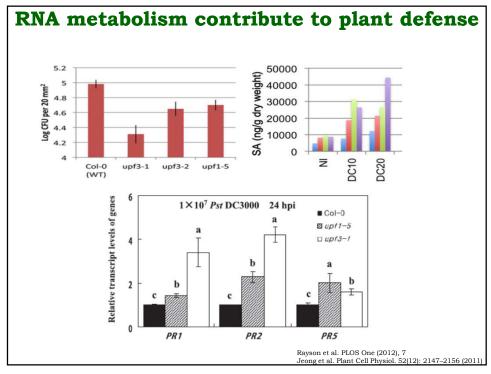
Inhibition of leaf cell expansion

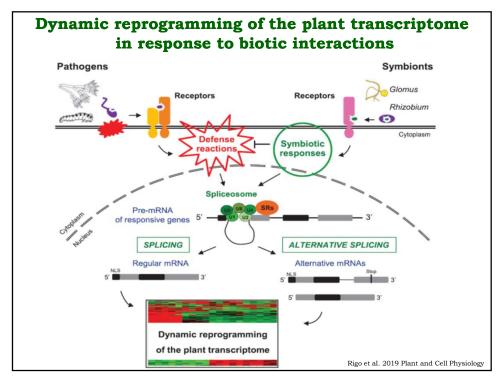


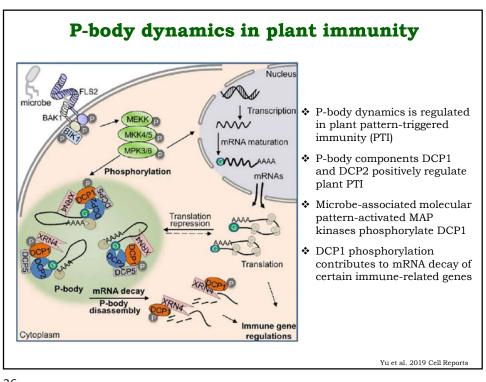
Acceleration of leaf senescence

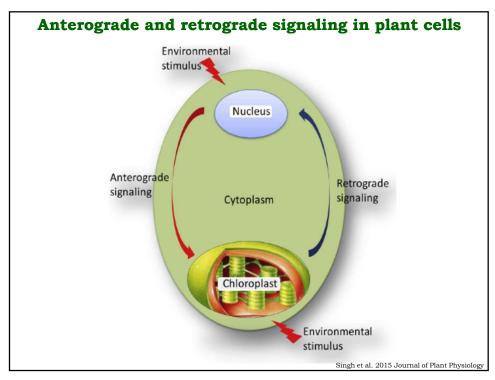


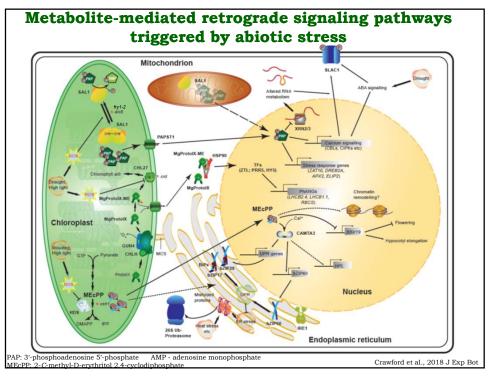

Inhibition of root elongation

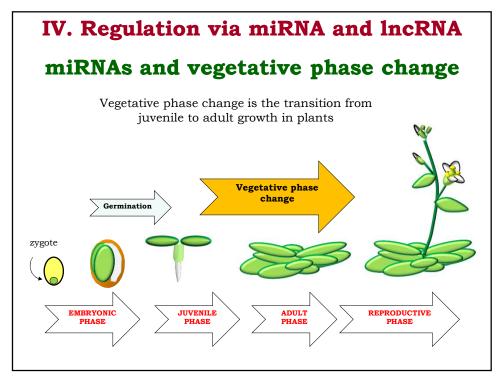

Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J., and Solano, R. (2003). Plant Cell 15: 165-178; Rūžička, K., Ljung, K., Vanneste, S., Podhorská, R., Beeckman, T., Friml, J., and Benková, E. (2007). Plant Cell 19: 2197-2212

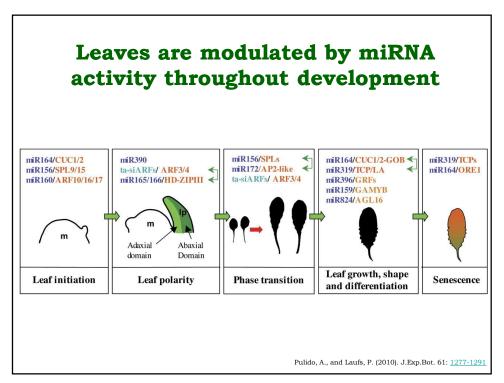


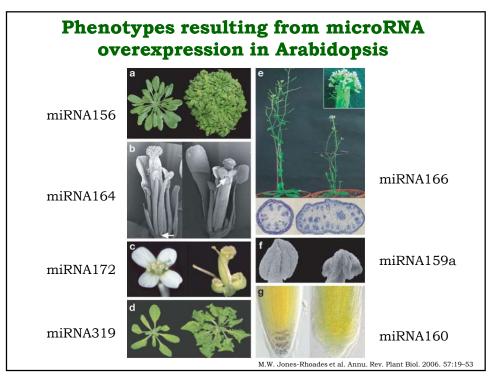

_

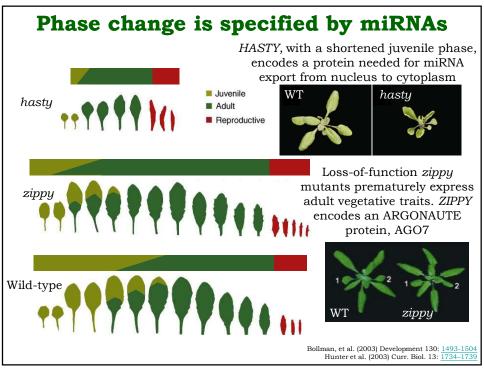


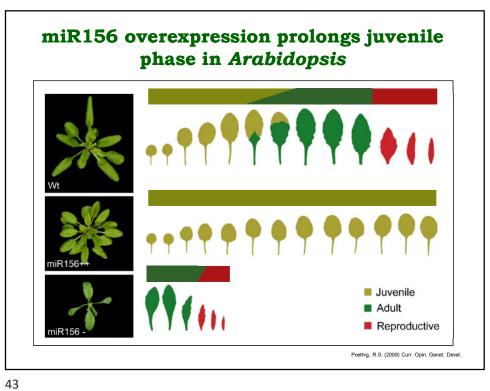


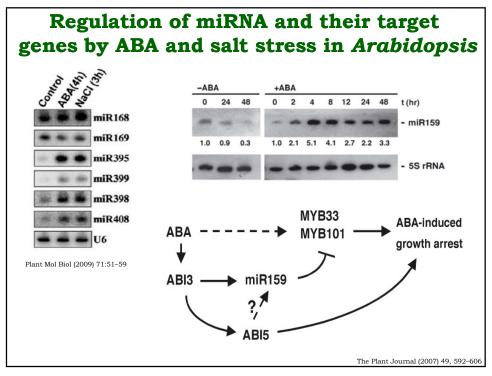


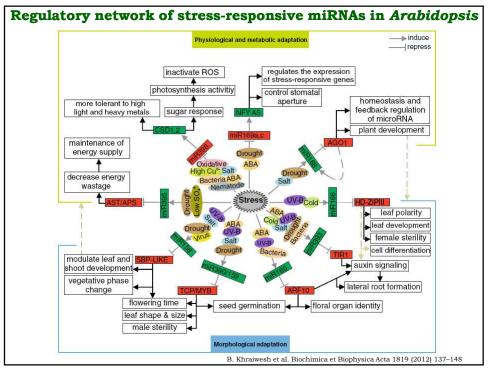


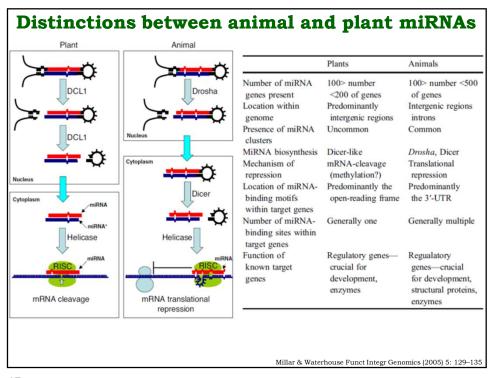


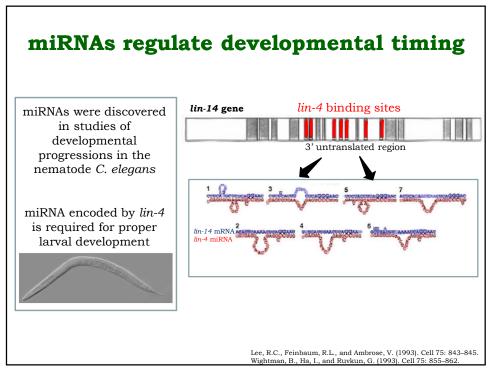


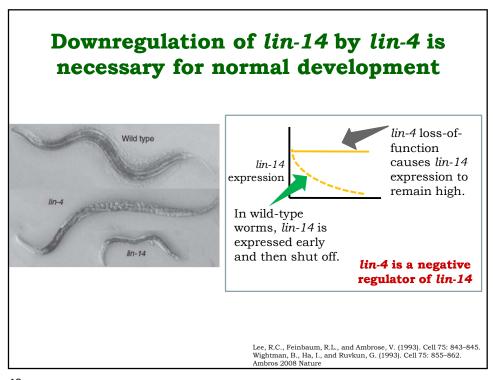


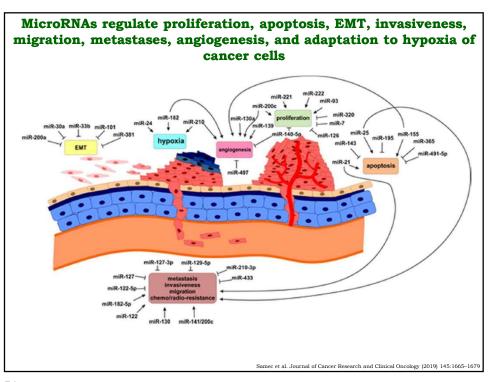






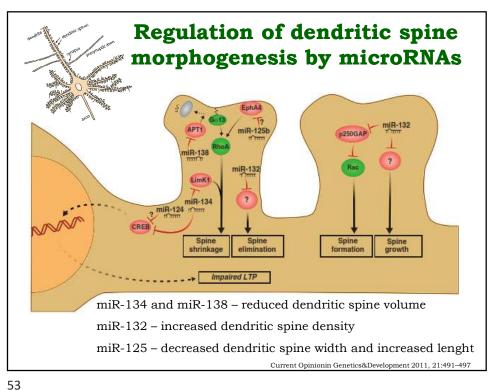


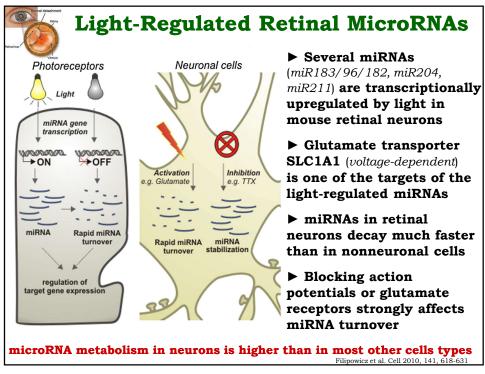

Role	miRNA family	Target families/genes	Reference(s)			
Auxin signaling	miR160 miR164 miR167 miR390 miR393	ARF10 NAC1 ARF8 ARF TIR1/F-box AFB	[122,123] [130] [122] [114] [15,124]				
Leaf development	miR159 miR164	MYB NAC1	[48,127,128 [132]	Role	miRNA family	Target families/genes	Reference(s)
	miR166 miR172 miR319	HD-ZIPIII AP2 TCP	[131] [127] [128]	Adaptive responses to stress	miR156 miR159	SBP MYB	[37,43,44,103] [16,37,43,48,49]
Leaf polarity	miR166 miR168 miR390	HD-ZIPIII AGO1 ARF	[120] [121,131] [120] [114]		miR160 miR167 miR168	ARF10 ARF8 AGO1	[37,50,100] [37,42,43] [37]
Floral organ identity	miR160 miR164 miR172	ARF10 NAC1 AP2	[122,123,1 [132,133] [134]		miR169 miR171 miR319	NFY/MtHAP2-1 SCL TCP	[37,43,52,110,136 [37,43] [16,37,43]
Flowering time	miR319 miR156 miR159	TCP SBP MYB	[127,128] [125–127] [48]		miR393 miR395 miR396	TIR1/F-box AFB APS/AST GRF	[15,16,37,42,43] [15,16,37] [16,37]
	miR172 miR319	AP2 TCP	[127,135] [127]		miR397 miR398 miR399 miR408	Laccases, Beta-6-tubulin CSD UBC24/PHO2 Plastocyanin	[15,16,37] [15,19,37,43,53,7 [36,37,75,76]
				Regulation of miRNA	miR162 miR168 miR403	DCL1 AGO1 AGO2	[16,37,44] [137] [120] [114]
				Others	miR158 miR161	At1g64100 PPR	1
					miR163 miR173 miR174 miR175	At1g66700, At1g66690 At3g28460 At1g17050 At5g18040, At3g43200,	
Khraiwesh et al. 2011 E	Biochimica et	Biophysica Acta			miR394	At1g51670 F-box	



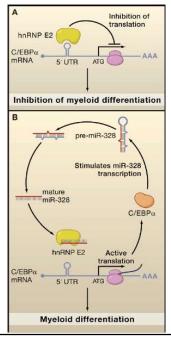
miRNA in animal development MiR-124 Neuroblasts Myotube Muscle fibre Stefani G., Slack F. J., (2008) Mol Cell Biol

Mechanism of miRNAs regulation of cancer	MicroRNAs	Target pathway/gene product	References
† Proliferation	↑ miR-93; ↑ miR-200e; ↑ miR-221; ↑ miR-222; ↓ miR-7; ↓ miR-126; ↓ miR-140-5p; ↓ miR-320	TIMP2, P27 ^{Kip1} , SOX4, EGFR, ADAM9, PDGFRA	Bai et al. (2017), Guan et al. (2017), Lan et al. (2015), le Sage et al. (2007), Wang et al. (2015, 2016), Web- ster et al. (2009)
Apoptosis	$ \uparrow \ miR-10b; \ \uparrow \ miR-21; \ \uparrow \ miR-25; \ \uparrow \ miR-155; \ \uparrow \ miR-222; \ \downarrow \ miR-143; \ \downarrow \ miR-195; \ \downarrow \ miR-365; \ \downarrow \ miR-491-5p $	Bel-2, Bel-xL, PUMA, PTEN, DR4, TP53, SOCS1, SOCS6, AKT, Ras/MEK/ERK	Bahena-Ocampo et al. (2016), Gu et al. (2018), Guo et al. (2012), Hatley et al. (2010), Jiang et al. (2014) Li et al. (2017c), Liu et al. (2012), Razumilava et al. (2012), Song et al. (2017), Wu et al. (2017), Xue et al. (2016), Zhu et al. (2015)
† EMT	↓ miR-30a; ↓ miR-33b; ↓ miR-101; ↓ miR-381; ↓ miR-200 family (miR-200a)	$ZEB1/ZEB2, vimentin, Wnt/\beta\text{-catenin/ZEB1}, SOX4, \\ Snai1$	Cheng et al. (2012), Cong et al. (2013), Guo et al. (2014), Korpal et al. (2008), Kumarswamy et al. (2012), Liu et al. (2014), Pang et al. (2017), Qu et al (2015)
† Invasiveness † Migration † Metastases † Chemo/radio-resistance	† miR-21; † miR-25; † miR-122; † miR-130; † miR- 141/200e; † miR-548j; ‡ miR-122-5p; † miR-548j; ‡ miR-122-5p; † miR-129-5p; ‡ miR-210-3p; † miR-433	TIMP3, PTEN, FBXW7, KRAS, MAPK, ITGA6, TGFβR2, VEGF-A, DUSP4, FGFRL1, RAB27A, FNDC3B, Dicer, TNS1	Choi et al. (2016), Duan et al. (2016), Fan et al. (2018), Gong et al. (2015), Guo et al. (2013), Li et al (2017a), Liu et al. (2013), Martin del Campo et al. (2015), Wang et al. (2018a), Xu et al. (2017, 2018), Yang et al. (2017), Zhan et al. (2016)
Adaptation to hypoxia	↑ miR-24; ↑ miR-182; ↑ miR-210	FIH1, HIF-1α, PHD2, PTPN1	Li et al. (2014b, 2015c), Roscigno et al. (2017)
† Angiogenesis	† miR-130a; † miR-139; † miR-155; † miR-182; † miR-200c; † miR-210; † miR-449a; miR-140-5; miR-497	VEGF-A, VEGFR2, RASA1, c-MYB, VHL, FGFRL1, CRIP2, HIF-1α	Du et al. (2015), Kong et al. (2014), Li et al. (2015a), Lu et al. (2017), Shi et al. (2016), Wang et al. (2014a), Yang et al. (2016, 2018)

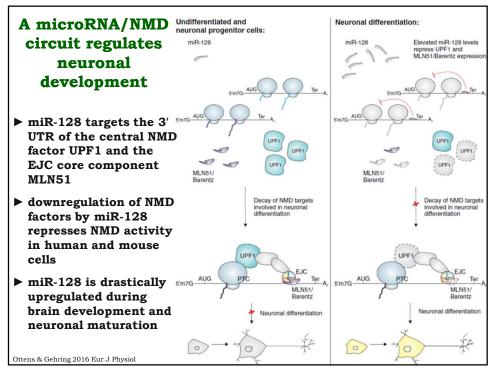

Explanatory notes: 7 increase. 1 decrease

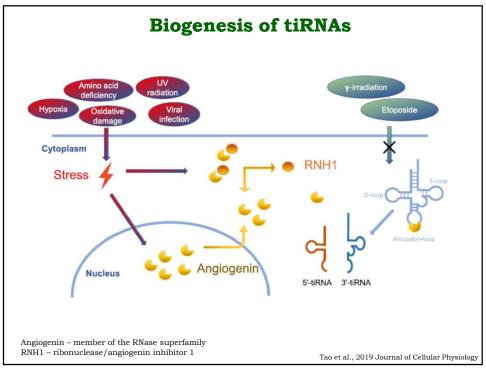

ADAM9 A disintegrin and metalloproteases 9, AKT protein kinase B, Bel-xL B-cell lymphoma-extra large, Bel-2 B-cell lymphoma, CRIP2 cysteine-rich protein 2, DR4 Death Receptor-4,

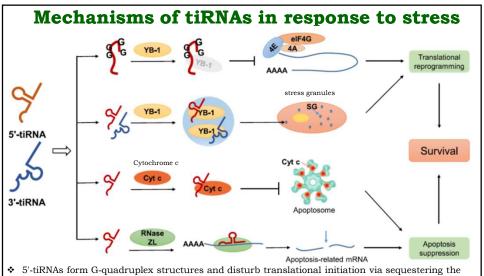
DUSP4 Dual Specificity Phosphatase 4, FBXW7 F-box and WD-40 domain protein 7, FGFRL1 fibroblast growth factor receptor-like 1, FIHI factor-inhibiting HIF hydroxylase 1, FNDC3B


Fibronectin Type III Domain Containing 3B, HIF1a hypoxia-inducible factor 1a, ITGA6 integrin submit-6, KRAS Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, MPR mitogenetivated protein kinase 4, PGERA platelet-derived growth factor receptor A, PHD2 hypoxia-inducible factor protein inkinase 4, PGERA platelet-derived growth factor receptor A, PHD2 hypoxia-inducible factor protein phosphatase non-receptor type 1, PUMA the p53 upregulated modulator of apoptosis, p27^{Kep1} cyclin-dependent kinase inhibitor 1B, RaB27A Ras-related protein Rab-27A, RASA1 RAS
p21 protein activator 1, SNA1 smail family zinc finger 1, SOCS1 suppressor of cytokine signaling 1, SOCS5 suppressor of cytokine signaling 6, SOX4 the SRY-box 4, TGFjR2 the transforming growth factor bet neceptor-2, TIMP2 tissue inhibitor of metalloproteinas 3, TR87 I Tensi 1, TP53 tumor protein p53, VEGF vascular endothelial growth factor to metalloproteinas 1, TP53 tumor protein p53, VEGF vascular endothelial growth factor, VHL von Hippel-Lindau tumor suppressor, ZEB1 Zinc finger E-box-binding homeobox 1, ZEB2 Zinc finger E-box-binding homeobox 2

Samec et al. Journal of Cancer Research and Clinical Oncology (2019) 145:1665-1679

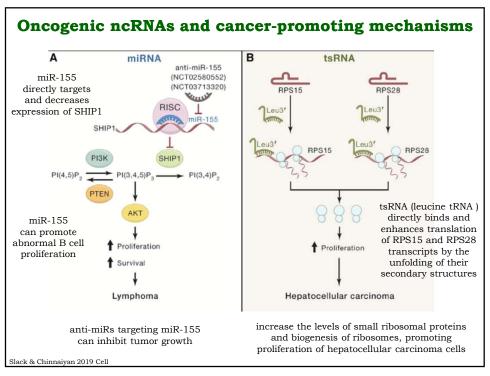

miRNA as a DECOY in myeloid cell differentiation

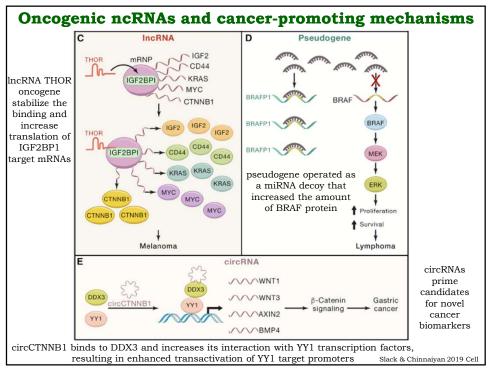


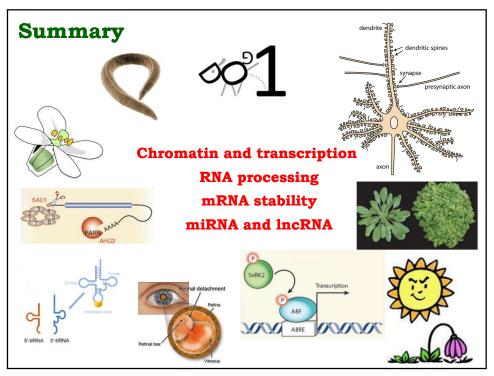

- ▶ RNA binding protein hnRNP E2 (activated by BCR/ABL kinase in chronic myeloid leukemia patients-CML) inhibits translation of C/EBP mRNA by binding to its 5' UTR. This stops MD
- ▶ miR-328 directly binds hnRNP E2 due to sequence similarity to the E2 binding site on C/EBP mRNA
- ► translation of C/EBP is activated leading to MD
- ► C/EBP stimulates miR-328 transcription (positive feedback loop for MD fine-tuning)

Beitzinger and Meister, Cell, 2010

55






- eIF4F complex from mRNA
- ❖ 5'-tiRNAs and 3'-tiRNAs cooperate with Y-box protein 1 (YB-1) to prevent the eukaryotic initiation factor 4F (eIF4F) complex from initiating translation and induce the assembly of stress granules
- under hyperosmotic stresses, tiRNAs directly bind to Cyt c and form a ribonucleoprotein complex, which can inhibit apoptosis by decreasing apoptosome formation or reducing activity
- tiRNAs inhibit apoptosis by reducing mRNAs via a process dependent on the cleavage by tRNase ZL

Cancer type	tiRNA	Sample type	Function	Reference
Brest cancer	5' tiRNA-Arg/Asn/Cys/Gln/Gly/Leu/Ser/Trp/ Val/Asp/Lys	Serum	Associated with clinicopathological characteristics	Dhahbi et al. (2014)
	5' tiRNA-Val	Cell, tissue, serum	Suppress cell proliferation, migration and invasion	Mo et al. (2019)
Prostate cancer	5'-tiRNA derived from the pseudogene tRNA-Und-NNN-4-1	Seminal fluid	Noninvasive biomarker for cancer screening	Dhahbi et al. (2018)
	5'-tiRNA-Asp-GUC, 5'-tiRNA-Glu-CUC 5'-SHOT-RNA ^{AspGUC} , 5'-SHOT-RNA ^{HisGUG} , 5'-SHOT-RNA ^{LysCUU}	Serum, tissue Cell	Prognostic parameter Enhance cell proliferation	Zhao et al. (2018) Honda and Kirino (2016) Honda et al. (2015)
Lung cancer	5'-tiRNA-Leu-CAG	Cell, tissue, serum	Promote cell proliferation and cell cycle	Shao et al. (2017)
Gastric cancer	tiRNA-5034-GluTTC-2	Cell, tissue, plasma	Biomarker for diagnosis	Zhu et al. (2019)
Colorectal cancer	5'-tiRNA-Val	Cell, tissue, serum	Promote cell migration, invasion and metastasis	Li et al. (2019)

RNAs with in vivo experimental evidence						
Name	ncRNA Class	Cancer Types Examined	In Vivo Experimental Techniques Used	Cancer-Related Mechanisms and/or Functions of ncRNA	References	
Oncogenic ncF	RNAs					
miR-155	miRNA	lymphoma	transgenic overexpression mouse model, treatment with antimiRs	targets SHIP1 transcript, a negative regulator of AKT, to increase proliferation and survival	O'Connell et al., 2009; Babar et al., 2012; Cheng et al., 2015	
HOTAIR	IncRNA	breast	siRNA knockdown, overexpression in mouse xenografts	recruits PRC2, LSD1/ CoREST/REST chromatin modifying complexes, scaffolds transcription factors at target promoters of genes involved in invasion, metastasis, and proliferation	Gupta et al., 2010; Li et al., 2016b	
THOR	IncRNA	lung, melanoma	CRISPR-Cas9 knockdown, overexpression in mouse xenografts; transgenic knockout, overexpression in zebrafish	binds IGF2BP1 to stabilize interactions with oncogenic target mRNAs, in turn stabilizing those transcripts and promoting proliferation	Hosono et al., 2017	
BRAFP1	pseudogene	B cell lymphoma	transgenic overexpression mouse model	acts as a ceRNA for miRNAs that target the BRAF transcript, leading to increased BRAF expression, MAPK signaling, and proliferation	Karreth et al., 2015	
circCCDC66	circRNA	colorectal	siRNA knockdown in mouse xenografts	sponges several miRNAs that target oncogenic transcripts (e.g., MYC), promoting proliferation, migration, and invasion	Hsiao et al., 2017 Slack & Chinnaiyan 2019 G	

