OTHER RNA PROCESSING

RNA modifications

- Present in all domains of life
- 150 modifications identified in all types of RNAs
- Added co-transcriptionally (mRNA, rRNA) or post-transcriptionally (tRNA, snRNA)
- Include methylation, hydroxylation, acetylation, deamination, isomerization, selenylation, reduction, cyclization and conjugation with amino acids and sugars
- mainly in tRNAs and rRNAs
- 80% in tRNAs; 10% -20% of tRNA residues are modified
- 16 novel modifications in tRNAs identified in XXI
- termed "epitranscriptomics" provide gene regulation at the post- transcriptional level

Suzuki Nat Rev Mol Cell Biol 2021

HO

ΗŐ

НÖ

ac⁴C

Cm

H₂N

HO

HN

0

НÓ

НÓ

Um

HO

HÓ

U

НÓ

RNA modifications

RNA modifications: A methylation

Enzymes	Substrates
Methyltransferase	s
METTL3-METTL14	m ⁶ AmRNAs
IME4	m ^e A mRNAs
METTL16	m ⁶ A snRNA, mRNAs, and oth ncRNAs
PCIF1	m ⁶ Am mRNA cap
CMTR1	Am mRNA
FBL	Am rRNA
TRMT61A	m ¹ A58 tRNA
TRMT61B	m ¹ A nuclear encoded tRNA
TRMT10B	m ¹ A nuclear encoded tRNA
TRMT10C	m ¹ A mitochondrial mRNA
DIM1	m62A18SrRNAA1850,1851
METTL4	m ⁶ Am snRNA
Demethylases	
FTO	m ⁶ A, m ⁶ Am RNA
ALKBH5	m ^e ARNA
ALKBH1	m ⁴ A, m ⁶ C and hm ⁶ C tRNA
ALKBH3	m ⁴ ARNA and DNA
Binding proteins	
YTHDC1	m ⁶ AmRNAs
YTHDCz	m ^e A mRNAs
YTHDF1	m ⁶ AmRNAs
YTHDFz	m ⁶ A m RNAs
YTHDF3	m ⁶ A m RNAs
ELAVL1	m ⁶ A mRNAs
elF3	m ⁶ A m RNAs
HNRNPC/G	m ⁶ A mRNAs
HNRNPA2B1	m ⁶ A m RNAs
IGF2BP1-3	m ⁶ A mRNAs
EMRP	m ⁶ A mRNAs

Boulias and Greer, Nat Rev Mol Cell Biol 2022

N⁶-methyladenosine:

- in eukaryotic mRNAs and IncRNAs (discovered in 1970s)
- reversible, conserved, present in 0.1–0.4% of As in mammals (~3–5 m⁶A sites per mRNA)
- methyltransferases METTL3 or METTL4-METTL14 (with WTAP), METTL16, IME4 in a [G/A/U][G>A]m6AC[U>A>C] context
- demethylases FTO and ALKBH1, 3, 5
- readers YTH proteins : YTHDF1-3, YTHDC1-2, eIF3, ELAVL1, FMRP...

Dominissini at al, Nat.Rev.Genet., 2014; Boulias and Greer, Nat Rev Mol Cell Biol 2022

Patil at al., TiCB, 2018

Boulias and Greer, Nat Rev Mol Cell Biol 2022

mRNA stability

YTHDC2 m⁶A reader recruits **CCR4-NOT complex, stimulating** mRNA deadenylation.

IGF2BPs m⁶A reader promotes mRNA stability.

Translation

m⁶A in 5'UTR: eIF3 m⁶A reader recruits 43S initiation complex to promote capindependent translation. m⁶A level in 5'UTR is enhanced by stress.

m⁶A in 3'UTR: YTHDF1/F3 bind eIF3 which recruits 43S and stimulates capindependent translation.

m⁶A in gene body inhibits tRNA selection and slows translation elongation.

Boulias and Greer. Nat Rev Mol Cell Biol 2022

rRNA, translation regulation

ZCCHC4 methylates A4220 in 28S rRNA resulting in increased translation and inhibition of cell proliferation

METTL5-mediated methylation of A1832 in 18S rRNA results in selectively increased translation of a unique sets of transcripts

miRNA processing

m⁶A deposited by METTL3 and recognized by HNRNPA2B1 that recruits Microprocessor is required for primiRNA processing by DROSHA/DGCR8

Boulias and Greer. Nat Rev Mol Cell Biol 2022

Chromatin crosstalk via nascent RNA

YTHDC1 binding to m⁶A in nascent transcripts and to KDM3B (H3K9 demethylase) induces histone demethylation and reinforces chromatin accessibility in transcribed regions.

METTL3-METTL14 writer that methylates nascent transcripts is recruited by H3K36-Me.

carRNA suppression

m⁶A in causes their degradation via the NEXT complex, resulting in gene repression

carRNAs promote chromatin accessibility chromosome-associated regulatory RNAs PROMPTs (promoter associated RNAs) eRNAs (enhancer RNAs) repeat RNAs

Boulias and Greer, Nat Rev Mol Cell Biol 2022

IncRNA regulation

Xist IncRNA m⁶As promote Xistmediated gene silencing and X chromosome inactivation in a YTHDC1- dependent manner

m⁶A in *MALAT1* IncRNA induces a conformational change, which leads to binding of HNRNPC and changes in nuclear organization and tumorigenesis

Boulias and Greer, Nat Rev Mol Cell Biol 2022

m⁶A, Pol II and translation

- mRNA transcription rates correlate with translation
- MTC complex associates with slow Pol II
- slow Pol II results in higher level of m⁶A in mRNAs
- high level of m⁶A reduces translation rate
- nuclear control of protein abundance

m⁶A multiple functions

Epitranscriptomics Meiosis Sex determination Cellular differentiation Development Pluripotency and Reprogramming Disease Cancer

N⁶-methyladenosine:

- in eukaryotic mRNAs, introduced close to m⁷G cap (at TSS)
- methyltransferase PCIF1/CAPAM, demethylase FTO
- resistant to Dcp2 decapping
- controls mRNA stability, RNAs with m⁶Am are more stable, but has little effect on translation Mauer et al, 2017; Boulias et al, Mol Cell 2019; Pandey et al, Cell Rep 2020; Oerum et al, NAR 2021

m¹A introduced by TRMT6/TRMT61A (nuclear) or TRMT61B, TRMT10C (mitochondrial)

m¹A is abundant in mRNAs (20% in humans), prevalent in mitochondrial transcripts, enriched near start codons and promotes translation or differently impacts translation depending on the position in mRNA region incorrect due to unspecific antibodies that recognize m⁷G cap! (Dominissini et al, Nature, 2017; Li at at, Mol Cell, 2017)

- m¹A in mRNAs are rare and occur at very low stoichiometry
- m¹A are present in some mt-RNAs (confirmed for mt-ND5)
- m¹As are avoided in cells, they disrupt W-C basepairing and lead to translational repression (Safra et al, Nature, 2017; Grozhik et al, Nat Comm, 2019)

m¹A are recognized by HRSP12 at GGUUC consensus

m¹A and m⁶A cooperatively promote the interaction between RNA and HSRP12-YTHDF2 m¹A facilitates m⁶A-mediated mRNA degradation via HRSP12-YTHDF2 by RNaseP/MRP m¹A promotes rapid degradation of m⁶A-containing circRNAs by the same pathway

RNA modifications: pseudoU

RNA modifications: mRNA pseudoU

PseudoU (Ψ):

- generated by pseudouridin synthases
- affects translation efficiency
- impacts mRNA structure

HN

0

OH

HO

Ψ

- reduces rate of translation elongation and EF-Tu GTPase activation
- increases the levels of amino acid substitution
- suppresses stop codons
- **N1m** Ψ (N1-methyl-pseudouridine)
- enhances translation by increasing ribosome density

Svitkin et al, NAR, 2017

RNA modifications: internal m⁷G

- specific miRNAs are m⁷G-modified by METTL1
- m⁷G promotes miRNA processing by antagonizing G4 in pre-miRNAs (G4 inhibit pre-miRNA processing)

Translation Regulation

- human mRNAs contain internal m⁷Gs
- some m⁷Gs are introduced by METTL1
- internal m⁷G affect translation

N⁶-methyladenosine:

- in eukaryotic mRNAs, introduced close to m⁷G cap (at TSS)
- methyltransferase PCIF1/CAPAM, demethylase FTO
- resistant to Dcp2 decapping
- controls mRNA stability, RNAs with m⁶Am are more stable, but has little effect on translation Mauer et al, 2017; Boulias et al, Mol Cell 2019; Pandey et al, Cell Rep 2020; Oerum et al, NAR 2021

RNA modifications: alternative caps

Jukius and Yuzenkova, WIREsRNA 2018

NAD⁺ RNA cap

- Found in bacteria (2009), *S. cerevisiae* (2017), mammalian cells (2017, plants (2019)
- Added cotranscriptionally by RNAP or post-transcriptinally
- Targets mRNA for degradation in eukaryotes, stabilizes mRNA in bacteria
- Hydrolyzed by specific enzymes, DXO and NUDT families
- NAD⁺ capped RNAs constitute only 1-5% of total RNAs
- NAD⁺ capped RNAs are more abundant in mitochondria (15% in humans, 60% in yeast)

Not an RNA

URIDYLATION

TUTases

Uridylation-dependent mRNA decay

Uridylation of pre-miRNAs and miRNAs

Degradation of histone mRNAs

RNA modifications: EDITING

RNA editing: post-transcriptional modification of RNA sequence

- up to 50-60% in Trypanosomes!
- insertions and deletions
- C to U or A to I exchange

RNA modifications: EDITING

Pre-edited mRNAs are transcribed from mitochondrial maxicircles, gRNAs from minicircle mtDNA. gRNA 5' anchor base pairs with mRNA and the gRNA center directs the number of Us inserted or deleted. The gRNA 3' oligo(U) tail stabilizes the gRNA/mRNA interaction.

The gRNA and enzymes are present in the 20S RNP complex (RECC or editosome). Endonuclease catalyzes mRNA cleavage at editing sites, TUTase inserts Us, U-specific exoribonuclease deletes Us. Cleaved mRNAs are resealed by RNA ligases.

RNA EDITING: A-to-I or C-to-U

Christofi and Zaravinos, J Transl Medicine, 2019

RNA editing: A-to-I by ADAR

Self-splicing RIBOZYMES

Mechanism: nucleophilic attack of the ribose -OH group (H_2O , Me^{2+}) on the phosphate

Self-splicing RIBOZYMES

RNase P RNA – a true enzyme

tRNA processing, multiple turnover

Trans-splicing

- SL (spliced leader) *trans*-splicing joins short 5' exon from the specialized SL RNA
- Genic *trans*-splicing joins exons of different pre-mRNA transcripts
- Both utilize the basic splicing machinery with SL snRNP

(U2, U4, U5, U6, <u>no U1</u>)

 Used by protozoa (Kinetoplastae) to produce variable surface antigens and when changing life-stages

Caenorhabditis elegans

mammals

Drosophila melanogaster

TABLE 1 Select Examples of SL trans-Splicing Organisms

	Species	SL Exon Length	SL RNA Length	% of Genes Trans-spliced	Reference
Euglenozoa	Trypanosoma brucei	39 nt	141 nt	100%	31–34
	Euglena gracilis	26 nt	101 nt		35
Dinoflagellates	Amphidinium carterae	22 nt		67 or 100%	36,37
	Karlodinium micrum	22 nt	56 nt	${\sim}100\%$	38
Sponges	Heterochone sp.	39–41 nt			39
Cnidarians	Clytia hemisphaerica	33–37 nt		23%	40
	Hydra vulgaris	SL-A 24 nt SL-B 46 nt	SL-A 80 nt SL-B 107 nt	30%	41
Ctenophores	Mnemiopsis leidyi	39–43 nt or 55 nt	128 nt or 138 nt	3%	39,40
	Pleurobrachia pileus	37 nt		40%	40
Flatworms	Schistosoma mansoni	36 nt	93 nt		42,43
	Stylochus zebra	51 nt	110 nt		30
	Echinococcus multilocularis	36 nt	104 nt	~25%	44
Crustaceans	Parhyale hawaiensis	33–35 nt	97–98 nt	10%	39
Chaetognaths	Spadella cephaloptera	36 nt	104 nt	41%	45,46
Tunicates	Oikopleura dioica	40 nt	93 nt	12–24%	47
	Ciona intestinalis	16 nt	46 nt	50–58% (48% freq. 19% infreq.) 29,48–50
	Halocynthia roretzi	24 nt			51
Rotifers	Adineta ricciae	23 nt	105–106 nt	50-60%	52
Nematodes	Caenorhabditis elegans	22 nt	SL1 95 nt SL2 107-114 nt	70%	53–55
	Ascaris sp.	22 nt	106 nt	80–90%	56,57
	Trichinella spiralis	22 nt	97–99 nt	1%	58

Lasda and Blumenthal, WIRERNA., 2011

Trans-splicing

a 22 nucleotide SL sequence

SL RNAs have features of a 5' splice site and snRNA

Lasda and Blumenthal, WIRERNA., 2011; Blumenthal, Trans-splicing and operons, 2005

Subcellular structures, bodies, condensates, LLPS, MLOs

Functions of MLOs in gene regulation

Nuclear bodies, Membranless organelles (MLOs)

Nuclear bodies Nucleolus • Cajal body • Fibrillar center • Nuclear speckle • Dense fibrillar component • Nucleolus • Granular component • PML body • Polycomb body • Transcription factory • Mucleolus

Nemeth and Langst. Trends in Genet, 2011; ^{spectra} Sleeman and Trinkle-Mulcahy, Curr Op Cell Biol, 2014

http://bellsouthpwp2.net/b/h/bhagavathula4745/The%20nucleus.htm

Cajal Bodies (Ramon y Cajal, 1903)

- RNP assembly factory: sn/snoRNA, telomerase RNA processing, modification and assembly
- contain specific scaRNAs (RNA modification)
- associate with telomeres and histone and snRNA gene loci
- different composition (coilin, SMN protein,

Nuclear Speckles (Interchromatin Granule Clusters, IGCs)

- enriched in splicing related factors (snRNP, SR proteins)
- usually not transcriptionally active but transcriptionally active genes also associate with NS
- role in RNA processing or storage of RNA processing factors

Paraspeckles

- regulate the expression of some genes by nuclear retention of RNA
- contain PSF/SFPQ, P54NRB/NONO and PSPC1 proteins
- organized around ncRNA (eg. NEAT1)

PML Bodies (Promyelocytic Leukemia Nuclear Bodies)

- role in tumor suppression, viral defense, DNA repair, transcriptional regulation
- localize to gene-rich and transcriptionally active regions of chromatin
- composition might be heterogeneous and functionally different
- found also in the cytoplasm

PcG Bodies – Polycomb Bodies

- a subset of RNAi factors (AGO, Dicer, Piwi) localize to PcG Bodies
- located close to heterochromatin, centers of gene repression

OPT Domain appear in G1 phase, represent sites of DNA damage

plant Dicing bodies contain DCL1, HYL1 and SE proteins, function in pri-miRNA processing

Hirose et al., Nat Rev Moll Cell Biol 2022

Body name	Number per cell	Typical size (μm)	Defining components	(Putative) Functions
Cajal body	0–10	0.1–2.0	Coilin, SMN	Involved in snRNAs and snoRNAs modification, and assembly and trafficking of snRNPs and snoRNPs. Also plays a role in telomerase assembly and telomere length regulation.
Clastosome	0–3	0.2–1.2	19S, 20S proteasome	Contains 20S and 19S proteasomes, ubiquitin conjugates, and protein substrates of the proteasome. Forms in response to stimuli that activate proteasome-dependent proteolysis.
Histone locus body	2–4	0.2–1.2	NPAT, FLASH	Involved in the transcription and processing of histone pre-mRNAs.
Nuclear speckle	25–50	0.8–1.8	SRSF2, SRSF1, Malat1	Involved in the storage, assembly, and modification of pre-mRNA splicing factors.
Nuclear stress body	2–10	0.3–3.0	HSF1, HAP	Contains satellite III ncRNAs and is a part of the general response to stress. Precise function not yet determined.
Nucleolus	1–4	0.5–8.0	RNA Pol I machinery	Involved in the transcription and processing of rRNA and the assembly of ribosomal subunits. Plays roles in the modification and assembly of other nuclear RNAs and RNPs. Regulates cell cycle progression by sequestering and modifying many proteins.
Paraspeckle	10–20	0.5	PSP1, p54nrb, Men ε/β (Neat1)	Involved in nuclear retention of some A-to-I hyperedited mRNAs.
Perinucleolar compartment	1–4	0.2–1.0	PTB, CUGBP	Precise functions are unknown but its prevalence positively correlates with metastatic capacity.
PML-nuclear body	10–30	0.3–1.0	PML	Involved in response to many forms of stress, viral defense, and genome stability by the sequestration, modification, and degradation of many partner proteins.
Polycomb body	12–16	0.3–1.0	Bmi1, Pc2	Involved in Polycomb proteins-mediated gene paring and silencing in <i>Drosophila</i> . Precise function in mammalian cells remains to be determined.

Mao at al TiG., 2011

MLO RNAs and their interactors

MLO	RNA	Length (nt)	RNA interactors	Example protein interactors
Cajal body	(Pre-)U-snRNAs	70–200 ^a	Pre-mRNA splice sites, scaRNAs	COIL, GEM2/4-8, LSM4, PRPF3/4/6/8/31/43, SART3, SMN1, SNRPA/A1/B/B2/C/D1/D2/D3/E/F, SNRNP70, SRSF1/2, TGS1, U2AF1/2
	7SK snRNA	331	rRNAs	CCNT1, CDK9, HEXIM1/2, LARP7, MEPCE, NELF
	C/D & H/ACA box snoRNAs	70–90	rRNAs, snRNAs	15.5K, COIL, DKC1, FBL, GAR1, NHP2, NOP10/56/58, TGS1
	TERC	500	SNORD44	COIL, DKC1, GAR1, NAF1, NHP2, NOP10, RUVBL1/2, SMN1, TERT, WRAP53
Histone locus body	Histone mRNAs	350-800 ^a	U7 snRNA, Y3/Y3** ncRNA	CPSF73/100, FLASH, SLBP, SYMPK, ZFP100
	U7 snRNA	63	Histone pre-mRNAs	FLASH, LSM10/11, SNRPB/D3/E/F/G
	U2 snRNA	187	SCARNA2, mRNA 3' splice site	SNRPA1/B/D3/E/F/G, SF3A1-3, SF3B1-4, U2AF1/2
	Y3/Y3** ncRNA	105/60	Histone pre-mRNAs	CPSF1/2, FIPL1, FLASH, IGF2BP1, RO60, SSB, SYMPK, WDR33
Nuclear speckle	MALAT1 IncRNA	7,000	U1 snRNA, miRNAs	DBC1, DDX23, DKC1, KHDRBS1 PRPF8, NOP58, RNPS1, SRSF1/2/3, SRM160, U2AF2
	Mature U-snRNAs	70–200	Pre-mRNA splice sites, scaRNAs	15.5K, SART3, SF3A1-3, SF3B1-5, SNRPA/A1/B/B2/C/D1/ D2/D3/E/F/G, SNRNP70, SRSF1/2, U2AF1/2
Nucleolus	rRNAs	150-4,700	snoRNAs	15.5K, NCL, NPM1, 80+ ribosomal proteins (RS, RL), SSB, DKC1, FBL
	SNORD3A (U3 snoRNA)	217	rRNAs	15.5 K, FBL, IMP3/4, MPP10, NOP56/58, RRP7/9, UTP proteins
	C/D & H/ACA box snoRNAs	70–90	rRNAs, snRNAs	15.5K, DKC1, FBL, GAR1, NHP2, NOP10/56/58, TGS1
Paraspeckle	NEAT1 IncRNA	23,000 ^b	Pri-miRNAs	DROSHA, DGCR8, NONO, PSPC1, SFPQ, TARDP, FUS
Sam68 nuclear body	Unidentified IncRNA	_	_	DBC1 ^c , HNRNPL1 ^c , KHDRBS1 ^c

Reaction sites

Pre-RNA processing in nucleoli Modification and assembly of snRNAs in CB

Hot spots

Gene activation or repression Epigenetic reactions Stabilization of interactions between gene loci

Storage/modification sites of proteins and RNAs

Some A-to-I hyperedited mRNAs are retained in paraspecles Phosphorylation of SR proteins in nuclear speckles

Sumoylation of nuclear proteins in PcG bodies

Wegener and Müller-McNicoll, Sem Cell Dev Biol 2018

Cajal body function

Matera and Shpargel, Curr. Op. Cel. Biol., 2006

Cytoplasmic P-bodies and Stress Granules

Processing Bodies

mRNA storage mRNA decay?

<u>PB</u>

Translationally stalled mRNAs devoid of initiation factors shuttle to PBs <u>SG</u>

Global translation halts in stress, mRNAs bound to the translational machinery and other SG proteins Dynamic biomolecular condensates Formed by phase separation of RNAs and proteins Role in translational control and proteome buffering upon translational arrest (PB) and stress (SG)

SG Stress Granules

Chantarachot and Bailey-Serres, Plant Phys, 2018

Translation in SGs

- nontranslating mRNAs are preferentially recruited to SGs
- mRNAs in SGs can undergo translation (complete cycle)
- translating mRNAs can enter, leave, or stably localize to SGs
- translation in SGs mainly, but not only, occurs on mRNAs enhanced under stress

(shown using single-molecule mRNA imaging, SunTag)

Cytoplasmic PBs and SGs

Processing body

Translation repression RNA decay and stabilization

miRNA pathway

Nonsense-mediated mRNA decay

Decapping complex components

Deadenylation complex components

Stress granule

Translation repression

Translation initiation

RNA decay and stabilization

Ribonuclease activity

miRNA pathway

ATPase activity

CPEB1, EIF4E-T LSM14A/B (Scd6), DDX6 (Dhh1), IGF2BP2 Ge-1, GW182, AGO1/2, MOV10, ZCCHC3, PUM1 UPF1, SMG7 DCP1A/1B/2, EDC3/4, PATL1 LSM1-7, CCR4-NOT

TIA-1/TIAR (Pub1/Ngr1), Caprin-1, FMRP/FXR1, Ataxin-2 EIF2A, EIF3, EIF4A/B, EIF4G (Tif4631/Tif4632) TDP-43, PAB1, ELAVL1, IGF2BP1, TTP G3BP, SND1, XRN1, DDX1, CCR-NOT TNRC6B, AGO2, EIF3A DDX6 (Ded1), MCM, CCT, RUVBL1/2 (Rvb1/2)

composition of SG and PB proteome database (http://rnagranuledb.lunenfeld.ca/)

Guzikowski et al, WIREsRNA, 2019

Phase transition, Droplets, MLOs, Liquid-Liquid Phase Separation (LLPS)

Formed by unstructured disordered protein domains around RNA or DNA

Organize several cellular processes:

- Heterochromatin structure (HP1)
- Transcription (Mediator, Pol II CTD)
- Processing (nucleolus, spliceosome, SR proteins, CBs)
- RNA retention and storage (NS, PS, PB, SG)
- RNA decay (degradosome)
- Protein modification and degradation (autophagosome, proteasome)

IDR – Intrinsic Disordered Regions

Condensates

- transient or stable
- specific or unspecific
- with RNA, DNA or protein only
- may undergo transition from gel to liquid to solid aggregates

LLPS in the nucleus

LLPS as RNA processing hubs

Bhat et al., Nat Rev Moll Cell Biol 2021

LLPS in the nucleus – Pol II

LLPS in the nucleus – Pol II

Aberrant condensates in age-related human disease

Disease	Proteins in volved	Description of defect			
ALS and FTD	FUS	The RNP-binding protein FUS phase separates to form liquid droplets and ALS and FTD mutations promote a transition from a liquid to solid-like state			
ALS and FTD	hnRN PA1	The stress granule protein hnRNPA1 forms liquid droplets by phase separation and disease mutations in hnRNPA1 accelerate the hardening of these droplets	ALS and FTD	HSPB8, BAG3, HSP70, TIA1, G3BP1, FUS, p62	Impairments in protein quality control cause accumulation of defective ribosomal products in stress granules and promote a transition of stress granules into an aberrant state
ALS and FTD	TDP43	The C-terminal low complexity domain of TDP43 promotes condensate for mation and ALS mutations change the phase separation behaviour of TDP43	Paget disease of bone	p62	Paget disease of bone mutations in p62 affect polyubiqui tin chain-induced p62 phase separation, impairing p62 body form ation and autophagic degradation
ALS and FTD	TDP43	ALS-associated mutations in TDP43 change the material properties of RNP transport granules and cause transport defects in the axon	Cancer	KEAP1,p62	Mutations in KEAP1 affect the properties of p62-dependent biomolecular condensates, affecting proteasomal degradation and autophagy
ALS and FTD	TIA1	An ALS-associated mutation in TIA1 increases its propensity to undergo a phase transition into a solid state and promotes the assembly of non-dynamic stress granules	Myopathy	HSPB2, HSPB3	HSPB3 regulates the formation of nuclear condensates by HSPB2 in differentiating myoblasts and loss-of-function mutations in HSPB3 cause aberrant HSPB2 phase transitions and myopathy
ALS and FTD	FUS, TDP43	Prion-like proteins such as FUS and TDP43 undergo an aberrant phase transition into a solid-like state when RNA-binding is abrogated or in the absence of RNA	Huntington disease and other repeat expansion disorders	Huntingtin	Repeat expansion-containing RNAs undergo a liquid-to-gel transition at a similar critical repeat number as observed in repeat expansion diseases
ALS and FTD	FUS	ALS mutations in FUS affect RNA binding and lead to aberrant phase transitions and the formation of non-dynamic, solid-like condensates	Huntington disease	Huntingtin	Huntingtin ex on 1 forms reversible liquid-like assemblies and these convert into solid-like assemblies with a fibrillar structure with time
ALS and FTD	NPM1	DPR proteins bind to the nucleolar protein NPM 1, altering NPM1 phase separation, dispersing NPM1 from nucleoli and entrapping rRNA in static condensates	Alzheimer disease and other tauopathies	Tau	Phosphorylated or mutant aggregation-prone Tau undergoes phase separation into liquid condensates, promoting a conversion of Tau into an aggregated state
ALS and FTD	G3BP1,NPM1, TDP43,TIA1, hnRNPA1	DPR proteins alter the phase separation of prion-like proteins and change the material properties and dynamics of cytoplasmic and nuclear condensates	Cancer	SPOP	Cancer-associated SPOP mutations interfere with the formation of condensates that are required for ubiquitin-dependent proteostasis, causing the accumulation of proto-oncogenic proteins
ALS and FTD	G3BP1, FUS, hoRNPA1	DPR proteins phase separate and alter the assembly of stress granules	Cancer	SUMO, PML	Artificially engineered ALT-associated PML body-like condensates promote telomere clustering, mimicking a phenotype in many
ALS and FTD	SOD 1, G3BP1, FUS, G3BP1	Misfolded proteins, such as ALS-linked variants of SOD1, ac cumulate and aggregate within stress granules, changing stress granule dynamics and triggering an aberrant liquid-to-solid phase transition			cancer cells

RNA condensates: functional or incidental

P-bodies	PROs	CONTRAs
Translational repression RNA decay	PBs contain translationally repressed mRNAs and RNA decay factors	Mutants in PBs are competent for translational repression or RNA decay
Stress Granules Translational repression	SGs enrich translationally repressed mRNAs and stalled translation initiation factors	Only a fraction of repressed mRNAs are in SGs SGs are not required for translational repression. mRNAs in SGs are translated
Nucleolus Ribosome biogenesis	Nucleolus enriches ribosome assembly factors in layers rRNA moves in nucleolus by flow Nucleolar proteins form droplets <i>in vitro</i>	Nucleolar morphology varies between species In human nucleoli, rRNAs remain near transcribing rDNA repeats
Transcription condensates <i>Putnam et al. Genes D</i>	Pol II CTD undergoes LLPS <i>in</i> <i>vitro</i> Pol II and TFs are around active transcription sites LLPS correlates with increased transcriptional output <i>ev</i> , 2023	Condensation does not correlate with transcriptional output Low IDR concentrations promote transcription, high concentrations and condensation suppress transcription Not all transcription foci are condensates

RNA condensates: functional or incidental

Nuclear speckles Gene expression	PROs Nuclear speckles correlate with enhanced gene expression Splicing-defective mRNAs are retained in nuclear speckles Blocking splicing leads to accumulation of spliceosomes in nuclear speckles	CONTRAS Speckles accumulate inactive splicing factors that leave to be active Speckles are not major sites of transcription and do not contain active Pol II In some species speckle markers are diffuse in the nucleoplasm
Paraspecles Sequestration of RNAs and proteins	NEAT1 IncRNA is required for export of RNAs with Alu repeats NEAT1 KD releases paraspeckle proteins and activates gene expression	Paraspeckle composition diverges across evolution <i>NEAT1</i> is mammalian-specific, but Paraspecles also assemble in other species (<i>Drosophila, C. elegans</i>)
Cajal bodies snRNP assembly	Coilin- Nopp140 complex assembles CBs on snRNA genes Depletion of coilin leads to decrease in snRNPs and splicing	Coilin-null mutants do not assemble CBs but have normal levels of snRNAs and are viable