Reverse transcription (RT); Analysis of RNA ends; Techniques for studying transcription

Michał Koper, IGiB UW

RNA steady-state level = equilibrium between transcription, processing, and degradation

Methods of studying transcripts

Steady state transcript level (Presence in the cel):

- Northern-blot technique
- RT-PCR
- RT-qPCR
- SAGE (Serial Analysis of Gene Expression)
- Microarrays
- In situ hybridization (microscopic technique)
- RNAseq: High-throughput sequencing of transcriptomes

Nascent transcripts (RNA "in statu nascendi"):

- TRO (Transcription Run-On)
- FRAP (Fluorescence Recovery After Photobleaching; microscopic technique).
 - GRO-Seq (Global Run-On Sequencing).

In vivo Protein-DNA/RNA interactions:

- ChIP (*Chroamtin Immunoprecipitation*), e.g., presence of RNA Pol on gene; TFs-DNA interactions; "ChIP on CHIP"; ChIP-seq
- RIP (*RNA Immunoprecipitation*) – interactions of RRM proteins with RNA
- DIP (DNA Immunoprecipitation)
- CLIP (in vivo Cross-Linking and Immunoprecipitation; RNAprotein complexes).

Reverse transcription (RT) reaction

Discovery of reverse transcriptase

Howard M. Temin

David Baltimore

Renato Dulbecco

"For their discoveries concerning the interaction between tumour viruses and the genetic material of the cell"

RNA-DEPENDENT DNA POLYMERASE

Temin, H. M., and S. Mizutani. 1970. **RNA-dependent DNA polymerase in virions of Rous sarcoma virus**. Nature 226: 12 1 I-I 2 13.

Reverse transcriptase: 2 enzymes in 1

HIV-1 RT

(heterodimer)

RNA-dependent DNA polymerase activity

(and DNA dependent DNA Pol)

Ribonuclease H (RNase H) activity

Ding J. et al, 1998, J. Mol. Biol. 284; 1095-1111

RT requires a primer to start DNA synthesis

Oligo-dT primers, Can be "anchored", i.e. TTTTTTTTTTT(A/C/G)

short random primers, e.g. hexamers, octamers

QUALITATIVE techniques (*"***presence***"***):**

- structure of the genes (introns)
- determination of the RNA 5' ends
- structure of the RNA 3' ends
- detecting the expression of constructs

QUANTITATIVE techniques ("levels"):

- semiq RT-PCR
- RT-qPCR

BOTH – QUALITATIVE and QUANTITATIVE techniques

RNAseq - transcriptome sequencing

Principle of RT-PCR

RNase H activity of wild type RT

Responsible for:

- removal of DNA:RNA hybrids
- generation of PPT primers
- removal of tRNA and PPT primers

Particularly active at sites with RNA secondary structure where <u>RT slows down.</u>

> In some commercially available RT Rnase H activity is <u>lowered or</u> <u>removed.</u>

Courtesy of the TATA Biocenter

MMLV RNase H- Minus (Promega, Germany) M-MLV (Promega) Avian Myeloblastosis Virus (AMV) (Promega) Improm-II (Promega) Omniscript (Qiagen, Germany) cloned AMV (cAMV) (Invitrogen, Germany) ThermoScript RNase H- (Invitrogen) SuperScript III RNase H- (Invitrogen)

Temp

Sthalberg et al, 2004, Comparison of reverse transcriptases In gene expression analysis, Clin Chem. 50(9):1678-80.

AMV: Avian Leukemia Virus MMLV: Moloney Mouse Leukemia Virus

GOOD LABORATORY PRACTICE AT EVERY STAGE OF WORK WITH RNA!

DNase treatment 1h, 37°C

- +

RNA quality is a key factor for RT!

RNA quality control after isolation is always necessary!

DNase treatment is always necessary!

Recommended use of RNase inhibitors!

RNA quality assessment

Efficiency and specificity of reverse transcription reaction STRONGLY depends on:

- Methods of priming
- Type of reverse transcriptase (features of the enzyme)
- The sequence of a particular RNA molecule it's tendency to

form complex secondary structures

- Performance differences can be as high as 100X!!!
- The optimal RT conditions should always be determined experimentally

Analysis of 5' and 3' RNA ends

Primer extension

Determination of the transcription start site

T.-R. Lee, H.-P. Hsu, and G.-C. Shaw, 2001, J. Biochem. Vol. 130, pp. 569-574

Analysis of 5' RNA ends - 5' RACE

Rapid Amplification of 5'cDNA Ends

anchored PCR

Analysis of 3' ends of polyadelinated RNAs - 3' RACE

Analysis of polyA⁺ 3' ends

Molecular techniques of RNA analysis 2024

Sallés et al, Methods, 1999

Analysis of polyA⁺ 3' ends

Circular RT-PCR (cRT-PCR)

Analysis of 5' and 3' ends of the mitochondrial COX2 transcript in plants

Khun and Binder, NAR, 2002.

Circular RT-PCR (cRT-PCR) cont.

- RNA ligase ligates RNA molecules lacking a cap at the 5' end
- When testing molecules with a cap, the cap must be removed to detect RNA
- The cap can be removed by enzymes that hydrolyze P-P bonds, e.g. bacterial RNA 5'pyrophosphohydrolase RppH (NEB) or plant acid pyrophosphatase Cap-Clip (CellScript) (formerly acid pyrophosphatase from tobacco TAP, now not produced) or by digesting RNA-DNA duplexes with RNase H (makes sense when the RNA is highly expressed, exact 5' end of the transcript is known and we are not interested in alternative 5' ends)

https://www.neb.com/en/tools-and-resources/selectioncharts/mrna-decapping-selection-chart

Techniques for studying transcription

Transcription Run ON technique

Transcription Run-On (TRO)

Antisense probes that are approx. 70 to 400 nt in length:

- ssDNA obtained from M13-derived phagmids
- Oligonucleotides usually 70-85 nt
- *in vitro* transcribed RNA (e.g., using T7 promoter)
- PCR products
- dsDNA plasmids

Blotting TRO probes on filters

Standard nylon membranes for nucleic acids, e.g. Amersham Hybond N.

Vacuum application, e.g. *Bio-Rad slot/dot blotter.*

The amounts of probes applied depends on the expression levels of the transcripts under study, e.g. for ACT1, 25s or 18s rRNA - 5 µg oligonucleotides 75 nt. or 5 µg ssDNA M13 probes (inserts about 250 nt).

Modified from Birse et al, Science 280 (1998):

Culture cells to $OD_{600} \sim 0.2-0.3$ (0.1-0.4).

Permeabilization with sarcosyl - sarcosyl breaks down complexes - "rips off" proteins that interact with the polymerase - any induction before cell harvesting!

Transcription with a mixture of AGC and ³²P-UTP for 5 min - longer makes no sense because the polymerase "falls off" after a few tens/hundreds of sec.

Isolation of RNA by any method, e.g. "hot phenol", GTC/phenol/zirconia beads.

Hydrolysis of RNA in NaOH solution before application to filters. Depending on the duration of hydrolysis, different sizes of fragments obtained.

Hybridization, washes and exposure similar to the northern-blot technique.

TRO applications and variants

Quantitative applications:

- Testing the transcriptional activity (power) of promoters
- Determination of transcription rates for individual genes
- Differences in transcriptional activity between mutants or upon external conditions.

Qualitative applications:

- Study of transcription termination defects (read-through)
- Distinguishing between RNA Pol presence and RNA synthesis

TRO Variants:

- Nuclear Run-On, on isolated cell nuclei: Gariglio (1981) and Brown (1984)
- Mitochondrial Run-On, on isolated mitochondria

GRO-seq: Global (Genomic) Run-On

RNA labeling: Run-On in the presence of BrU or 4tU

5-Bromouridine (BrU)

xNa

4-thiouridine (4tU)

Biotinylation of the thiol group and binding to the streptoavidin complex

Reverse transcription -> RNAseq

4tU-seq

Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling

(Barras et al, Genome Biol 2015)

ChIP – Chromatin Immunoprecipitation

Chromatin immunoprecipitation - ChIP

Studying protein-DNA interactions *in vivo*!

- Transcription factor binding sites
- Presence (distribution) of RNA Pols along chromatin (genes)
- Histone modifications
- Chromatin remodeling factors

Crosslinking agent: formaldehyde

Reaction 1 (Shiff base is formed) **Reaction 2** COOH
Resolution vs. specificity of crosslinking

- *In vivo* crosslinking, high reactivity of formaldehyde
- High resolution: 2Å
- Problem with crosslinking of weaker interacting proteins with DNA (greater distance between atoms in residues)
- Other cross-linking agents (e.g., DTBP)

ChIP procedure

Chromatin Immunoprecipitation (ChIP)

RNA Immunoprecipitation -RIP

RNA immunoprecipitation is similar to ChIP

DNA/RNA-protein "cross-link"

Transcription termination

Why to terminate transcription?

In eukaryotes, few genes are organized in polycistrons (exceptions: ncRNA, mtRNA)

Incorrect transcription termination affects gene expression

RNA polymerase II - cleavage and polyadenylation

Molecular techniques of RNA analysis 2024

Millevoi and Vagner, NAR, 2008

Hybrid - allosteric-torpedo - model of RNA polymerase II transcription termination

Luo and Bentley, Gene Dev, 2006

Molecular techniques of RNA analysis 2024

Nrd1/Nab3/Sen1 dependent termination of pol II

Jacquier, Nat. Rev. Genet 2009

Transcription termination of RNA polymerase I

rDNA genes in the nucleous

Miller's spreads - "Christmans tree".

Top: V.E. Foe, Cold Spring Harbor Symp. Quant. Biol. 42:723-740, 1978; bottom: Ulrich Scheer, MBC on NCBI.

 Pol I transcribes ribosomal RNA (35S rRNA)

• Pol I RNA – up to 80% of all transcriptional activity of the cell nucleus!!!

• In yeast, rDNA genes are organized in 150-200 tandem repeats

Schematic of an rDNA repeat in *S. cerevisiae*

with detailed transcription termination region

El Hage et al, Genes Dev., 2008,15;22(8)

Rat1 associates with the 3'-ETS region on the rDNA

El Hage et al, Genes Dev., 2008,15;22(8)

Transcription Run-On shows read-through of the major Pol I terminator in strains lacking Rat1 or Rai1

El Hage et al, Genes Dev., 2008,15;22(8)

RNA polymerase I transcription termination

Pol I termination factors:

- DNA-binding protein Nsi1
- Pol I subunit Rpa12
- endonuclease Rnt1
- RFB binding protein Fob1
- 5'-3' exonuclease Rat1/Rai1 (torpedo mechanism)
- RNA helicase Sen1
- Nrd1/Nab3 complex (??)

In mammalian cells transcript release element T-stretch + TTF-I pause site Richard and Manley, GeneDev., 2009 Molecular techniques of RNA analysis 2024

Conclusion - RNA pol I and RNA pol II "share" termination pathways

Pathways for transcription termination by different polymerases, Pol I and II, utilize overlapping factors and mechanisms

SUMMARY OF TECHNIQUES

- The level of RNA in a cell is the result of its synthesis and degradation.
- The fact that RNA polymerase is bound to DNA does not mean that it transcribes RNA.
- To study a transcript at the time of its formation, various molecular techniques should be used:
- TRO allows to study qualitatively and quantitatively the "ongoing" transcription (to detect nascent transcripts).
- ChIP makes it possible to study *in vivo* the interaction of proteins with DNA.
- **RIP** allows to study *in vivo* the interaction of proteins with **RNA**.

THANK YOU FOR YOUR ATTENTION