## **Real Time PCR**

**=**

# **Quantitative PCR (qPCR)**

**(RT-qPCR = reverse-transcription – quantitative PCR)**

*Michał Koper, IGiB UW*



#### **Pioneering work on qPCR (also known as kinetic PCR)**

• **Higuchi R., Dollinger G., Walsh P.S., Griffith R. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413-7.**

• **Higuchi R., Fockler C., Dollinger G., Watson R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026 -30.**



## **Applications of qPCR:**

- **Gene expression analysis (RT-qPCR)**
- **Detection of nucleic acids of pathogens: detecting the presence and determining the concentration of viruses and bacteria in serum**
- **Genotyping: SNP or HRM analyses**
- **Detection of GMOs in feed and food**



#### **qPCR is based on detection of PCR product increment over time**

- **Method is based on the determination of the DNA concentration for each reaction cycle, using fluorescence**
- **Fluorescent dyes binds dsDNA directly (nonspecific detection) or dayes are coupled with hybridization probes (specific detection - targeted to a selected strand of the amplicon under study)**

**amplicon = PCR product, PCR fragmnet**

- **Requires excitation system: halogen lamp, LED system or laser**
- **Requires detection system: separate CCD elements, CCD array or photomultiplier circuits**



#### **Examples of qPCR cyclers**



#### **Roche LightCycler 480**



#### **QIAGEN Rotor-Gene Q**



#### **Appliedbiosystems 7900HT**



## **qPCR cycler scheme**





# **How to detect DNA products in qPCR?**



## **DNA-binding dyes: SYBR Green**



*SYBR Green I, Wikipedia*

- **Belongs to cyanine dyes (containing heterocyclic rings with -C= bonds)**
- **Binds dsDNA, weakly ssDNA**
- **Excited by blue light (λmax = 488 nm)**
- **Emits green light (λmax = 522 nm)**



## **SYBR Green**



#### •Detects any **dsDNA**

- •Detection at the **ELONGATION** stage
- •Primers cannot form **PRIMER-DIMERS**
- •Product size preferably in the range of **100- 200 bp**
- •The size of the detected products for different genes must be **VERY CLOSE**
- •Enables the analysis of **MELTING CURVES**
- •**THE CHEAPEST** method



#### **qPCR primers design**

- **Length of the amplicon preferably less than 150 bp**
- **Avoid sequence complementarity within a primer or between primers = "primer dimer"**
- **Avoid unpaired bases**
- **Preferably G or C at the 3' end, never T**
- **Length of primers 18-30 nt**
- **GC content 40-60%**
- **Tm = (A+T)x2°C + (G+C)x4°C**
- **Use at least 2 programs and compare results!!! Different software = different algorithms (not always…)!**



# **Hybridization probes**



## **TaqMan – hydrolysis probes**



#### **TaqMan probe – design principles**

- **Short amplicons: 70-150 bp**
- **Tm = 68-70°C**
- **GC content 30-60%**
- **Never G at the 5' end (G is natural quencher)**
- **Probe length max. 30 nt**
- **Avoid strings of identical bases**
- **Avoid secondary structures**
- **Avoid complementarity with primers**
- **Choose a strand with a higher C content**



#### **Multiplex qPCR**





**Different detection formats and different dyes allow detection of 2 or more products in a single reaction (not possible with SYBR Green!!!)**

# **Determination of the RNA levels**



#### **Classic northern-blot technique**



#### Corrected fold increase = 10/2 = 5

#### Ratio target gene in experimental/control = fold change in target gene fold change in reference gene

*Microbiology and Immunology On-line; University of South Carolina School of Medicine*



## **Theoretical basis of qPCR**





#### **Transformed on a logarithmic scale**



*Microbiology and Immunology On-line; University of South Carolina School of Medicine*



**1,580,000,000**

**AMOUNT OF DNA**

DNA

 $\overline{0}$ 

**AMOUNT** 

#### **4 phases of the qPCR reaction**

- **Phase 1 : fluorescence at background level, reaction occurs exponentially but detection is not possible**
- **Phase 2: exponential growth detectable, fluorescence above background**
- **Phase 3: a "steep" increase in fluorescence allows detection that the reaction is occurring linearly**
- **Phase 4 - plateau: breakdown and saturation of the reaction**

M. W. Pfaffl: *Quantification strategies in real-time PCR* in *A-Z of quantitative PCR* (Editor: S.A. Bustin)





*Microbiology and Immunology On-line; University of South Carolina School of Medicine*



*Microbiology and Immunology On-line; University of South Carolina School of Medicine*



*Microbiology and Immunology On-line; University of South Carolina School of Medicine*

**Linear in the range of ~20 to ~1500**

#### **Linear in the range of ~20 to ~1500**



*Microbiology and Immunology On-line; University of South Carolina School of Medicine*





*Microbiology and Immunology On-line; University of South Carolina School of Medicine*











PCR Standard Curve: Data 27-Jan-03 1233ileff.opd

PCR Base Line Subtracted RFU

#### **Sensitivity and reproducibility: qPCR vs semi-qPCR**

- **Dynamic range: up to 9 orders of magnitude (10<sup>9</sup>) in qPCR and at most 2 (10<sup>2</sup>) in semiquantitative-PCR**
- **Variations inside the qPCR experiment - up to a few % and in semi-qPCR up to 30-40%**
- **Variance between qPCR experiments - up to a dozen % and in semi-qPCR up to 50-70%**
- **Detection level in qPCR: about 10 molecules at 50% reproducibility and about 100 molecules at 100% reproducibility.**

#### **Sensitivity and reproducibility: qPCR vs semi-qPCR**



*https://help.medicinalgenomics.com/qpcr-vs-end-point-pcr#*

#### **Different algorithms for determining the value of the threshold cycle**

# **Ct = Cp = Cq**

**Threshold cycle**

**Maximum of the 2nd derivative (Roche)**

**Quantification cycle**



## **Two methods of quantification**

#### • **"ABSOLUT QUANTIFICATION" or the method of standard curves.**

### • **"RELATIVE QUANTIFICATION"**

## • **Both methods are in fact proportional!**



## **The standard curve method**



PCR Standard Curve: Data 27-Jan-03 1233ileff.opd







Log Starting Quantity, copy number

NORTHERN



Correlation Coefficient: 0.999 Slope: -3.488 Intercept: 39.204 Y = -3.488 X + 39.204

fold change in target gene= copy number experimental copy number control

Unknowns

 $\blacksquare$ 

Ratio experimental/control = fold change in target gene fold change in reference gene

 $\Box$ Unknowns  $\bullet$ 

Standards



# **Efficiency is a key factor of the qPCR reaction**




AFTER 1 CYCLE  $100\% = 2.00x$  $90\% = 1.90x$  $80\% = 1.80x$  $70\% = 1.70x$ 



```
AFTER 1 CYCLE
100\% = 2.00x90\% = 1.90x80\% = 1.80x70\% = 1.70x
```
#### AFTER N CYCLES: fold increase =  $(efficiency)^n$







*Microbiology and Immunology On-line; University of South Carolina School of Medicine*

**PCR CYCLE NUMBER**



*Microbiology and Immunology On-line; University of South Carolina School of Medicine*



*Microbiology and Immunology On-line; University of South Carolina School of Medicine*









Log Starting Quantity, copy number

PCR Standard Curve: Data 27-Jan-03 1233ileff.opd

PCR Base Line Subtracted RFU

### **Determination of the qPCR reaction efficiency**

#### **4 methods for determining E of the qPCR:**

**1. Calculated from the slope of the standard (calibration) curve - often E overestimated**

**Possible for each individual reaction:**

- **2. Calculated from fluorescence growth history using linear regression - "manual" method - often E underestimated**
- **3. Fitting the curve according to the assumed model to the fluorescence values from the 1st to the last cycle - often E underestimated**
- **4. Calculated from polynomial curve fitting to fluorescence data from phase 2 only - intermediate values**

M. W. Pfaffl: *Quantification strategies in real-time PCR* in *A-Z of quantitative PCR* (Editor: S.A. Bustin)

### **Determination of the qPCR reaction efficiency based on standard curves**



### **qPCR reaction equation**

# $N_{\text{ct}} = N_0 (1 + E)^{\text{ct}}$

- **N<sub>Ct</sub>: number of molecules after Ct cycles of amplification**
- **N<sup>0</sup> : initial number of molecules**
- **E: PCR reaction efficiency**
- **Ct: the value of the threshold cycle**



### **The PFAFFL method or the Realtive Quantification Method**

### **Michael W. Pfaffl**

### **"A new mathematical model for relative quantification in real-time RT–PCR"**

#### **Nucleic Acids Research, 2001, 29:2002-2007**

**<https://doi.org/10.1093%2Fnar%2F29.9.e45>**





4 *Microbiology and Immunology On-line; University of South Carolina School of Medicine*







PCR Amplification vs Cycle: Data 26-Feb-03 1147.opd



AFTER N CYCLES: ratio vit/con =  $(1.93)^{29.63-18.03}$  = 1.93<sup>11.60</sup> = 2053

PCR Amplification vs Cycle: Data 26-Feb-03 1147.opd



AFTER N CYCLES: ratio vit/con = (1.87)19.93-19.80 =1.870.13 = 1.08

PCR Amplification vs Cycle: Data 26-Feb-03 1147.opd



ratio = change in IL1-B =  $2053/1.08 = 1901$ change in RPLP0

$$
ratio = (\underbrace{\text{Etarget}}_{\text{Left}})^{\Delta \text{ Ct target (control-treated)}}
$$
\n
$$
(\underbrace{E_{\text{ref}}})^{\Delta \text{Ct ref (control-treated)}}
$$

### **Determination of reaction efficiency is essential!**

slope: -3.9 from a standard curve Given:  $Ct$ (sample A) = 23.5  $Ct$ (sample B) = 26.5

Calculate: (A) PCR efficiency

 $F = 10^{-1/\text{slope}} - 1 = 80\%$ 

(B) Relative expression between sample A and B:

 $(1+E)^{\Delta Ct} = 1.80^{(26.5-23.5)} = 5.8$ 

(C) Interpretation:

Sample A contains 5.8 times more target than sample B

**TATAA Biocenter** 



### **Determination of reaction efficiency is essential!**

slope: -3.5 from a standard curve Given:  $Ct$ (sample A) = 23.5  $Ct$ (sample B) = 26.5

Calculate the relative expression:  $E = 10^{-1/\text{slope}} - 1 = 93\%$  $(1+E)^{\Delta Ct}$  = 1.93<sup>(26.5-23.5)</sup> = 7.2

Interpretation:

The relative expression increased from 5.8 to 7.2 when the PCR efficiency was 13% higher.





### **Determination of reaction efficiency is essential!**







### **Error in qPCR reaction accumulates exponentially!**

**TATAA Biocenter** 



### **The mRNA equation**



- **η - RT efficiency CT - value (cycle) Ct**
- **E PCR** yield K<sub>RS</sub> relative qPCR sensitivity

**TATAA Biocenter** 



### **Quantification: 2 samples, 2 genes**





## **"garbage in, garbage out"**

**"Real-time quantitative RT-PCR is a wonderful method for fast, accurate, sensitive and cost-effective gene expression analysis. However, the simplicity of the technology itself makes it vulnerable for abuse in experiments in which the operator does not perform the required quality control throughout the entire procedure. "**

*Derveaux S. et al, Methods 50 (2010) 227-230*



# **RT-qPCR in practice**



### *RNA quality is a key factor!!!*

**DNase treatment 1h, 37**°**C**



**RNA quality = purity + integrity**

**Purity – determined spectrophotometrically (OD260/230 >2.0; OD260/280 >1.8)**

**RNA quality control after isolation is always necessary!**

#### **DNase treatment is always necessary!**

**20% of human genes have 1 exon, or there are expressed retropseudogenes or copies lacking introns!!!** 

#### **Recommended use of RNase inhibitors at RT!**



#### **RNA quality assays**



### **Quality affects results!!!**

#### **RIN: "RNA Integrity Number", min. 7 (according to Bioanalyzer, Agilent Technologies).**



*Molecular techniques of RNA analysis 2024 Becker C. et al, Methods 50 (2010) 237-243*

#### **Primer design strategies to minimize signals for gDNA contamination**



<https://www.thermofisher.com/pl/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/basic-principles-rt-qpcr.html>



# **The most crucial step of RT-qPCR is the**

# **reverse transcription reaction!!!**



**Efficiency and specificity of reverse transcription reaction STRONGLY depends on:**

- **Methods of priming**
- **Type of reverse transcriptase (features of the enzyme)**
- **The sequence of a particular RNA molecule – it's tendency to**

**form complex secondary structures**

- **Efficiency differences can be as high as 100X!!!**
- **The optimal RT conditions should always be determined experimentally**

#### **RT priming methods – advantages and disadvantages**



#### **Effect of the priming method on RT efficiency**



**RT efficiency**

**Sthalberg et al, 2004, Comparison of reverse transcriptases In gene expression analysis, Clin Chem. 50(9):1678-80.**

### **Specificity of priming methods**



**Stahlberg et al, 2004, Comparison of reverse transcriptases In gene expression analysis, Clin Chem. 50(9):1678-80.**

#### **Effect of the priming method on RT efficiency**



**Stahlberg et al, 2004, Comparison of reverse transcriptases In gene expression analysis, Clin Chem. 50(9):1678-80.**

#### **Differences in RT reaction efficiency can reach 100X!**



**Stahlberg et al, 2004, Comparison of reverse transcriptases In gene expression analysis, Clin Chem. 50(9):1678-80.**

#### **RT optimization**



*Behind the TATA Biocenter*

## **Negative Controls:**

- -RT: control of genomic DNA contamination, necessary!
- NTC: "no template controle": reagent purity control!!!

### **Positive control**:

• min. 2-3 samples, e.g., from the standard curve - control of reaction performance! (**IRC**  = inter-run calibrators)


### **Choice between 1-step or 2-step RT-qPCR reaction**





•Less experimental variation since both reactions take place in the same tube

•Fewer pipetting steps reduces risk of contamination

•Suitable for high throughput

amplification/screening Fast and highly reproducible

•A stable cDNA pool is generated that can be stored for long periods of time and used for multiple reactions

•The target and reference genes can be amplified from the same cDNA pool without multiplexing

•Optimized reaction buffers and reaction conditions can be used for each individual reaction

•Flexible priming options

#### **Advantages Disadvantages**

•Impossible to optimize the two reactions separately

•Less sensitive than two-step because the reaction conditions are a compromise between the two combined reactions

•Detection of fewer targets per sample

•The use of several tubes and pipetting steps exposes the reaction to a greater risk of DNA contamination

Time consuming

•Requires more optimization than one-step

[https://www.thermofisher.com/pl/en/home/brands/thermo-scientific/molecular](https://www.thermofisher.com/pl/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/basic-principles-rt-qpcr.html)biology/molecular-biology-learning-center/molecular-biology-resourcelibrary/basic-principles-rt-qpcr.html



**1-step**

**2-step**

## **Good laboratory practice IT'S BASIC!!!**

- **Do not pipette less than 2µl at a time by hand!**
- **Separate place for preparing the reaction without templat and separate for adding DNA!**
- **Powder-free gloves!**
- **Prepare reactions in "MIX" not separate!**
- **Do not open tubes/plates after reaction in PCR rooms!**
- **Laminar flow chambers!**



# **Basic analysis of qPCR reactions**



## **Amplification curves - raw data**





## **Baseline subtraction**





## **1 qPCR = 3 technical replicas!!!**





## **Inspection of amplification curves**

### **Gene tested**





## **Inspection of amplification curves**

### **Reference gene**





### **Possible mainly for SYBR Green**





### **Tm – depends on the length and GC/AT content**





### **Pure, specific qPCR product**





### **Non-specific products**





### **The primer-dimer problem**





**Do not blindly believe the melting curves!!!**

**A longer AT-rich product can have the same Tm as a shorter GC-rich one!!!**

**Always check the products for each new primer pair on a high-resolution gel! At least once, at the "reaction setup" stage.**



# **Standardization**



## **Reference gene selection**

### **THERE IS NO "PERFECT" REFERENCE GENE!!!**

- **Equal number of RNA copies in all cells**
- **Expressed in all cells**
- **Expressed at a medium level**
- **At least 2 different reference genes should be used! Better 3 to even 5!!!**
- **Standardize against the geometric mean for the reference.**
- *Vandesompele et al, Genome Biology, 2002,* • **Genes should be selected EXPERIMENTALLY from a larger group!!!**



## **Statistical analysis of Cq value variation for reference genes**



*Vandesompele et al., Genome Biology, 2002,*

**Nowadays geNorm is part of Biogazelle's qbase+ software for quantitative PCR dataanalysis**

**<https://www.qbaseplus.com/>**

**<https://genorm.cmgg.be/>**



## **Reference gene selection**

### **Alternatively…**

- **Trust published data, e.g., for human cells: GAPDH, albumin, actin, tubulin, cyclophilin, microglobulin, 18S or 28S rRNA... though risky**
- **e.g. https://www.gene[quantification.de/hkg.html#refgenes](https://www.gene-quantification.de/hkg.html#refgenes)**
- **Or use commercial primer panels (only possible for some model organisms)**



# **Layout design of the experiment**



## **RT error accumulation**

# $SD<sub>mRNA</sub><sup>2</sup> = SD<sub>RT</sub><sup>2</sup> + SD<sub>QPCR</sub><sup>2</sup>$



## **2 experimental designs**

- **The "sample maximization" method: as many different samples as possible analyzed in a single run of the instrument. That is, different genes analyzed in different reactions (preferred in routine research work - many culture conditions, many mutants, etc.).**
- **The "gene maximization" method: as many different primer pairs as possible during a single run of the device (preferred in commercial diagnostic kits: one patient - one reaction plate for multiple genes)**
- **Whichever method you choose, use IRC**

*Hellemans et al, Genome Biology, 2007,*



## **How many biological repeats, RT, qPCR?**



Ref: Ståhlberg et.al. Properties of the reverse transcription reaction in mRNA quantification Clin Chem 2004;50:3

### **TATAA Biocenter**



# **Optimization of qPCR reactions**



## **Optimization of qPCR reactions**

- **Optimization of reaction conditions: concentrations of dNTPs, Mg2+ , primers, SYBR Green - currently difficult because most "mixes" are "ready to use" and 2X concentrated.**
- **Program optimization: temperature and time of primers annealing and synthesis.**
- **4-step PCR (SYBR Green fluorescence measurement above Tm for product) or 2-step PCR (95 and 72°C only – common temperature of primer annealing and DNA synthesis)**
- **"touch-down" PCR, "hot-start" DNA polymerase**
- **The fastest way to optimize is to redesigning oligonucletodes**



## **PRIMERS Tm: PREDICTED vs DETERMINED EXPERIMENTALLY**



Source: ABI User Bulletin 6 ABI PRISM® Sequence Detection System

### **TATAA Biocenter**



## **Take home message!**



## **Alwayes keep standards!!!**

**Clinical Chemistry 55:4**  $611 - 622(2009)$ 

**Special Report** 

#### The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin,<sup>1\*</sup> Vladimir Benes,<sup>2</sup> Jeremy A. Garson,<sup>3,4</sup> Jan Hellemans,<sup>5</sup> Jim Huggett,<sup>6</sup> Mikael Kubista, 7,8 Reinhold Mueller, 9 Tania Nolan, <sup>10</sup> Michael W. Pfaffl, <sup>11</sup> Gregory L. Shipley, <sup>12</sup> Jo Vandesompele,<sup>5</sup> and Carl T. Wittwer<sup>13,14</sup>

### **http://www.gene-quantification.de/miqe.html**

Methods 50 (2010) S1-S5



Mini-review

A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines<sup>\*\*\*\*\*</sup>

Sean Taylor, Michael Wakem, Greg Dijkman, Marwan Alsarraj, Marie Nguyen \*

Bio-Rad Laboratories, Inc., Hercules, CA 94547, USA



## **www.Gene-Quantification.info**





#### www.Gene-Quantification.info 21st Anniversary! The Reference in gPCR & dPCR - Academic & Industrial Information Platform

Founded February 2002 -- Since 21 years, the Gene Quantification platform describes and summarises all technical aspects involved in quantitative gene expression analysis using realtimePCR (qPCR) & digital-PCR (dPCR) & Next Generation Sequencing. It presents the majority of new and innovative qPCR & dPCR applications, chemistries, methods, data analysis algorithms, MIQE & QC strategies, cyclers, kits, dyes, analysis methods, interesting events & workshops, and services involved. Please browse our page directory with all essential keywords or the gPCR platform, a summary of commercial and academic institutions presenting their PCR related tools.

Amplify your knowledge in qPCR, dPCR and NGS! Follow our streaming server presenting 500 talks => eConferences.de





*Molecular techniques of RNA analysis <sup>2024</sup>* **[www.Gene-Quantification.info](http://www.gene-quantification.info/)**



## **SUMMARY**

- **qPCR is a highly efficient, rapid and accurate method for nucleic acid quantification**
- **Enables low and medium throughput gene expression studies**
- **qPCR is based on real-time detection of DNA using fluorescent dyes**
- $(1+E)^n = 2^n$  if  $E = 100\%$  (2<sup> $\triangle \triangle Ct$ </sup>)
- **Quality control and correct design of the experiment are crucial!!!**



# **Thank you for your attention!**



# **Supplement 1 examples of qPCR application**



### **Actin mRNA precursor qPCR** *By David Barras*









*Molecular techniques of RNA analysis 2024*

## **Single cel qPCR**





Figure 1. Histograms showing the expression levels of 96 cells expressing ActB in logarithmic and linear scale (inset). Logarithms of transcript levels are mean-centered for the two glucose concentrations. Solid line describes lognormal distribution centered on the geometric mean (2.06) of the ActB expression levels. Inset shows histogram of the expression levels in linear scale.

> *Bengtsson M, Stahlberg A, Rorsman P, Kubista M. Genome Res. 2005 Oct;15(10):1388-92.*



## **Digital PCR - dPCR**







## **dPCR - examples of available platforms**

### **Biorad QX200**

**Possible preparation of 1-8 samples simultaneously Up to 20,000 reactions / sample Up to 96 samples can be read simultaneously**

### **Fluidigm Biomark HD**

**(also mass qPCR!) From 2,304 to 36,960 independent reactions (e.g., 48x48, 192x24, 48x770 layouts)** 





## **Immuno-qPCR**



T. Sano, C.L. Smith, C.R. Cantor, Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates, Science 258 (1992), 120-122

*M. Niemeyer; qPCR 2007*


# **Analysis of High-Resolution Melting curves**



*Roche*



# **HRM = High Resolution Melting**

- **DNA SATURATING dyes instead of SYBR Green!!!**
- **Resolution up to 50 florescence measurements / 1ºC**
- **Amplicons of different lengths**
- **Efficiency doesn't matter: end-point analysis!**
- **Standardization of the template concentration less important**



# **HRM = High Resolution Melting**



# **Supplement 2 - using qPCR to analyze chromatin methylation status**



## **DNA methylation silences transcription**





# **DNA bisulfite conversions**

- **Sodium bisulfie converts CYTOSINE into URACYL**
- **Does not modify methylated CYTOSINE**





# **DNA bisulfite conversions**



# **Met-DNA analyses**



Wikipedia, *Bisulfite sequencing*



# **Met-DNA analyses**





### **Analysis of methylation status using high-resolution melting curves: MS-HRM**



**PROTOCOL** 

#### Methylation-sensitive high-resolution melting

Tomasz K Wojdacz<sup>1,2</sup>, Alexander Dobrovic<sup>2</sup> & Lise Lotte Hansen<sup>1</sup>

<sup>1</sup>Institute of Human Genetics, University of Aarhus, The Bartholin Building, Wilhelm Meyers Allé, Bygn. 1242, DK-8000 Aarhus C, Denmark. <sup>2</sup>Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Becket Street, Victoria 8006, Australia. Correspondence should be addressed to T.K.W. (wojdacz@humgen.au.dk)

#### **NATURE PROTOCOLS** | VOL.3 NO.12 | 2008 | 1903

#### *Molecular techniques of RNA analysis 2024*

Nucleic Acids Research, 2007, Vol. 35, No. 6 e41 doi:10.1093/nar/gkm013

#### Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation

Tomasz K. Wojdacz<sup>1,2</sup> and Alexander Dobrovic<sup>1,3,\*</sup>

Published online 8 February 2007



# **Supplement 3 - use of RTqPCR in the diagnosis of coronavirus infections SARS-CoV-2**

[https://www.youtube.com/watc](https://www.youtube.com/watch?v=SNvGQJIcQfQ&t=13s) h?v=SNvGQJIcQfQ&t=13s (*in Polish*)



### **Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - virus causing COVID-19 (Coronavirus Disease 2019)**



### **SARS-CoV-2: a beta-coronavirus with a genome in the form of a single RNA molecule of approx. 30,000 nt in length, and with (+) polarity**



*Wikipedia*



## **SARS-CoV-2 replication cycle**





### **How can SARS-CoV-2 be detected?**





### **Types of diagnostic tests used**

### **Immunological tests**

**Detecting (using antibodies) anti-virus antibodies (does not necessarily detect the presence but the fact of passing infection): cassette, ELISA.**

**Detecting (using antibodies) the antigens of the virus (directly detecting its presence in the material)**





#### **Molecular tests**

**Detecting the genetic material of the virus (RNA) using RT-qPCR.**





### **"Windows" of sensitivity of diagnostic tests**



*https://www.synlab.com/news-publications/sars-cov-2/antigen-tests-forsars-cov-2-detection*



### **How to isolate viral RNA?**

**First, the collection of material - preferably a nasopharyngeal swab.**

**Then lysis of the material: enzymatic (proteinase K digestion) or chemical (chaotropic salts such as GTC).**

**RNA recovery based on the affinity of nucleic acids for silica resin ("columns") or ferromagnetic beads ("beads").**



### **Open vs closed systems**

### **Open systems**

- **Manual work (danger of contamination, not very efficient)**
- **open robots (you can choose different suppliers of plastics or reagents)**

### **Closed systems**

- **high cost but better standardization**
	- **"All-in-one" (isolation+RT-qPCR) or only isolation**
- **simplified operation**
- **"personal devices"**
- **problems with reagent availability**
- **Isolation + RTqPCR even in a few tens of minutes**











# **TaqMan – hydrolysis probes**



# **Multiplex qPCR**





**Different detection formats and different dyes allow detection of 2 or more products in a single reaction (not possible with SYBR Green!!!)**

## **What amplicons should be used in RT-qPCR ?**

#### **FIGURE 1**

Relative positions of amplicon targets on the SARS coronavirus and the 2019 novel coronavirus genome



E: envelope protein gene; M: membrane protein gene; N: nucleocapsid protein gene; ORF: open reading frame; RdRp: RNA-dependent RNA polymerase gene; S: spike protein gene.

Numbers below amplicons are genome positions according to SARS-CoV, GenBank NC 004718.

*Corman et al, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan;25(3)*

### **In addition, control amplicons (not always all used at the same time):**

- **SPIKE-IN RNA (synthetic - isolation control only)**
- **Internal control (human mRNA - isolation and collection control!)**



### **Sensitivity of the RT-qPCR method**

#### **FIGURE 3**

*Molecular techniques of RNA analysis 2024*

Determination of limits of detection based on SARS coronavirus genomic RNA and 2019 novel coronavirus-specific in vitro transcribed RNA



*Corman et al, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan;25(3)*





### **Safety first!!!**











### **Example result**

### **Viral amplicons Control amplicons**



*For more watch on YT: <https://www.youtube.com/watch?v=SNvGQJIcQfQ> (in polish)*

