Noncoding RNA (ncRNA)

Molecular techniques of RNA analysis Monika Zakrzewska-Płaczek

RNA categories

ncRNAs can be divided into 2 groups according to the functions they perform:

Housekeeping RNA	Regulatory RNA
Constitutive expression	Periodic expression
Necessary for normal cell functioning	e.g. in response to a stimulus, in a specific phase of development, cell cycle, etc. Impact on gene expression at the level of transcription or translation
tRNA i rRNA – translation snRNA – spliceosome components, pre-mRNA splicing snoRNA – rRNA maturation and modification scaRNA (CB specific) RNA components of RNase P and RNase MRP – endonucleases: tRNA and rRNA maturation Signal Recognition Particle SRP RNA – protein transport to the ER	 sRNA: siRNA (exo-siRNAs i endo-siRNAs; ta-siRNA; nat-siRNA; lsiRNAs); miRNA; piRNA → act in transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS) IncRNA – less known, mostly works in TGS at the chromatin level
tmRNA (tRNA-mRNA hybrids) - directing nascent proteins for degradation gRNA – guide RNA (RNA editing) telomerase RNA – telomere synthesis	level 8

ncRNA types based on molecular size:

- short ncRNA <200nt
- long ncRNA >200nt

Both groups of ncRNAs are very heterogeneous, including many different RNAs with various names and functions

What are small RNAs (sRNAs, smRNAs)

sRNA – 21-30 nt

gene silencing, RNA silencing

post-transcriptional gene silencing, PTGS . mRNA degradation, translation inhibition

transcriptional gene silencing, TGS epigenetic modifications of chromatin

Silencing specificity

is ensured by base complementarity between the silencing sRNA and the target RNA

AAAAAAAAAA

Histone modification, DNA methylation

RNAP

The core of RNA silencing – Dicers and Argonautes

RNA silencing uses a set of core reactions in which **double-stranded RNA (dsRNA)** is processed by **Dicer** and its homologues into **short RNA duplexes**.

These small RNAs subsequently associate with members of the **ARGONAUTE** family of proteins to confer silencing.

The core of RNA silencing – Dicers and Argonautes

In siRNA and miRNA biogenesis, **Dicer** proteins cleave long dsRNA or hairpin RNA into $\sim 21 - 25$ nt fragments. Dicer's structure allows it to measure the RNA it is cleaving. **Argonaute** (AGO) proteins bind small RNAs and their targets.

PIWI

PAZ

MID

3

<u>PIWI domain</u>: RNase H-like structure in some AGO proteins \rightarrow cleavage of RNA associated with sRNA (**slicer activity**)

Dicers and Argonautes in different organisms

	Species	AGO-PIWI-like		Dicer-like	RDRP	
	Opecies	AGO	PIWI	Dicei-like	RURP	
Plantae	Arabidopsis thaliana	10		4	6	
	Oryza sativa	18	-	5	5	
Fungi	Saccharomyces cerevisiae	-		-	-	
	Schizosaccharomyces pombe	1	-	1	1	
	Neurospora crassa	1	. 	1	3	
	Aspergillus nidulans	1	-	1	2	
Metazoa	Caenorhabditis elegans	5	3	2 (Dicer + Drosha)	4	
	Drosophila melanogaster	2	3	3 (2 Dicers + Drosha)	-	
	Danio rerio	4	4	2 (Dicer + Drosha)	-	
	Homo sapiens	4	4	2 (Dicer + Drosha)	-	

PTGS: post-transcriptional gene silencing

miRNA (microRNA)	plants, animals, viruses, <i>Protista</i>	20–25nt	Drosha (u zwierząt) + Dicer	Transcription by Pol II/Pol III	Regulation of mRNA stability (mRNA cleavage), translation inhibition			
mirtrons – derived from introns of mRNA precursors of protein-coding genes; occur in animals; independent of Drosha								
<u>siRNA</u> (small interferring RNA) – most act in cis, except tasiRNA								
exo-siRNA (exogenous)	plants, fungi, animals, <i>Protista</i>	21-24nt	Dicer	Transgenic, viral or other exogenous RNA	Post-transcriptional regulation of gene expression, antiviral defense			
endo-siRNA (pochodzenia endogennego)	plants, fungi, animals, <i>Protista</i>	~21nt	Dicer	Bidirectional or convergent transcription, binding of mRNA to pseudogene transcripts of opposite orientation	Post-transcriptional and transcriptional regulation of gene expression, regulation of transposon activity			
tasiRNA (trans-acting siRNA)	plants	21nt	DCL4	TAS RNA cleaved by miRNA	Post-transcriptional regulation			
natsiRNA (natural antisense transcripts-derived siRNA)	plants	24nt 21nt	DCL2 DCL1	Stress-induced bidirectional transcription	Regulation of stress response genes			

TGS: transcriptional gene silencing

siRNA (small interferring RNA)							
endo-siRNA (endpgenous)	plants, fungi, animals, <i>Protista</i>	~21nt	Dicer	Bidirectional or convergent transcription, binding of mRNA to pseudogene transcripts of opposite orientation	Post-transcriptional and transcriptional regulation of gene expression, regulation of transposon activity		
hc-siRNA (heterochromatic siRNA)	plants, <i>S. pombe</i>	24-26nt	DCL3	Transposons, repetitions	Chromatin modification		
piRNA (Piwi-interacting RNA)	Drosophila, C. elegans, mammals, Danio rerio	24–30nt	Dicer -independent	Long primary transcripts (?)	Wyciszanie transpozonów, inne nieznane funkcje		

miRNAs in plants

miRNAs are encoded by specific *MIR* genes, but they influence the expression of other genes - they are regulatory molecules acting in trans

miRNAs regulate developmental and physiological processes

miRNAs are believed to have evolved from siRNAs - they are created and mature in a similar (to some extent) way

microRNAs act by cutting mRNA or inhibiting translation

miRNAs in animals

Translational repression:

INITIATION BLOCK

miRISC inhibits translation initiation by interfering with eIF4F-cap recognition and 40S recruitment or by antagonizing 60S subunit joining and preventing 80S ribosomal complex formation.

Interaction of GW182 with PABP might interfere with the closed loop formation mediated by the eIF4G-PABP interaction and this contributes to the repression of translation initiation.

POST-INITIATION BLOCK

miRISC might inhibit ribosome elongation, induce ribosome drop-off or facilitate proteolysis of nascent polypeptides.

Vol 466 12 August 2010 doi:10.1038/nature09267

nature

Mammalian microRNAs predominantly act to decrease target mRNA levels

Huili Guo^{1,2}, Nicholas T. Ingolia^{3,4}, Jonathan S. Weissman^{3,4} & David P. Bartel^{1,2}

Destabilization of target mRNA is the predominant reason for reduced protein output.

Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells

Julien Béthune¹⁺, Caroline G. Artus-Revel¹ & Witold Filipowicz^{1,2++} EMBO reports VOL 13 | NO 8 | 2012

- **Step 1** Initial effect of miRNAs: inhibition of translation at the initiation step without mRNA decay.
- **Step 2** mRNA deadenylation by PAN2–PAN3 and CCR4–NOT complexes recruited by miRISC as a consequence of translation inhibition that makes poly(A) tail more accessible.
- **Step 3** Stimulated deadenylation potentiates the effect on translational inhibition and leads to decay of target mRNAs through the recruitment of the decapping machinery.

MIR genes: transcription of long pri-miRNA molecules that give rise to miRNAs

miRNAs are encoded by MIR genes

primary miRNA transcripts (pri-miRNA) form secondary, double-stranded structures that are recognized and cleaved by Dicer proteins (DCL1 in plants)

MIR gene

the miRNA* strand is degraded

Mirtrons

- present in *D. melanogaster*, *C. elegans*, and mammals
- miRNAs can be created from introns cut out from pre-mRNA during mRNA splicing
- independent of Drosha
- cleavage of the lariat structure (debranching) leads to the formation of pre-miRNA
- pre-miRNA \rightarrow miRNA biogenesis

miRNA nuclear functions

miRNAs present in the cell nucleus and nucleolus form a smaller nuclear miRISC complex with AGO2/AGO3, DICER, TRBP and TNRC6A proteins (TGA)

miRNA nuclear functions

TGA - transcriptional gene activation

Long ncRNA can regulate/inhibit gene expression by recruiting a transcriptional repressive complex. miRNA targeting a complementary sequence within the IncRNA would recruit a nuclear RISC and induce cleavage of IncRNA promoting exclusion of repressive complex.

Alternatively, miRNAs induce gene activation by recruiting a complex of transcriptional activators.

miRNA nuclear functions

TGS - transcriptional gene silencing

miRNA-targeted non-coding promoter associated RNA represents a docking platform for a protein inhibitory complex (RISC, PcG proteins and chromatin modulators) \rightarrow this enables a protein inhibitor complex to be in close proximity of the targeted region \rightarrow modification of chromatin structure.

miRNA guided recognition and interaction with promoter regions might occur through a direct inetraction between RNA and ssDNA complementary regions.

siRNA: protecting and maintaining genome stability

exo-siRNA:

protection of the genome against "foreign" genetic material: transgenic viral (VIGS – viral induced gene silencing)

Artificially introduced transgenes are often silenced by siRNA; post-transcriptionally or transcriptionally

Silencing can be triggered by: very high level of transgene expression double-stranded RNA derived from transgene expression abnormal RNAs resulting from transgene expression

endo-siRNA:

silencing of transposons and repeated sequences keeping some genes in an epigenetically inactive state

Structured loci

Ghildiyal & Zamore (2009) Nat Rev Genet

Endogenous siRNA in plants: hc-siRNA = heterochromatin siRNA

Two plant-specific RNA polymerases are associated with the biogenesis and function of hc-siRNA:

- RNA polymerase IV participates in siRNA biogenesis
- RNA polymerase V noncoding transcripts direct the silencing machinery to appropriate DNA sequences

=> RNA-directed DNA Methylation (RdDM)

This type of silencing is often associated with permanently transcriptionally inactive DNA, including centromeric regions and transposons, but also occurs in genes.

tasiRNA: plant endogenous siRNA

(trans-acting siRNA)

۲

.

.

transcription of the TAS locus by RNA polymerase II

miRNA/RISC binding and cleavage

second strand RNA synthesis by RDR6 (RNA-dependent RNA polymerase)

dsRNA is cleaved by DCL4 into a series of shorter dsRNAs, releasing multiple tasiRNA molecules from a single TAS gene

Several "phased" tasiRNAs are derived from each TAS gene

crucial for ensuring the specificity of tasiRNA; DCL4 begins to cleave the precursor accurately at this point and cuts at intervals of 21nt

Reprinted from Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: <u>207-221</u>, with permission from Elsevier.

natsiRNAs: plant endogenous siRNAs

Dicer-independent small RNAs: piRNAs

~25-30 nt

2'-O-methylated 3' ends

occur in animals, identified in *Drosophila* germline

bind to PIWI proteins:

• Piwi, Aubergine, Ago3 – Drosophila

silencing of transposons and DNA repeats

- MILI, MIWI, MIWI2 mouse
- HILI, HIWI1, HIWI2 human

it is believed that they can operate at different levels:

- posttranscriptionally transcript degradation
- in mammals, DNA methylation of transposon sequences

Dicer-independent small RNA: priRNA

priRNA - primal small RNAs

- identified in *S.pombe*
- formation/maintenance of heterochromatin in centromeric regions
- Triman: 3'-5' exoribonuclease
 - processing of priRNA and siRNA precursors

Molecular Cell

Article

Argonaute and Triman Generate Dicer-Independent priRNAs and Mature siRNAs to Initiate Heterochromatin Formation

SIRNAS

siRNA generation and heterochromatin formation

Mirela Marasovic,¹ Manuel Zocco,¹ and Mario Halic^{1,*} ¹Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany

Transcriptional gene silencing (TGS)

- siRNAs can silence DNA through enzymes that methylate cytosine or modify histone proteins
- Two plant-specific RNA polymerases are involved in the mechanism of transcriptional DNA silencing by siRNA: Pol IV and Pol V

Epigenetic regulation of gene expression

Epigenetic regulation of gene expression

DNA methylation

The role of DNA methylation: imprinting, X chromosome inactivation, embryonic development, repression of repeated sequences and transposons

Plant epigenetic mechanisms

Plant epigenetic mechanisms include DNA methylation, histone modification, and **RNA-directed DNA** methylation (RdDM). RdDM involves two plant-specific RNA polymerases (Pol IV and Pol V), an **RNA-dependent RNA** polymerase (RDR2), an enzyme that cleaves dsRNA (DCL3), and an Argonaute-family RNA-binding protein (AGO4).

Heritable silencing

The RNA-directed DNA methylation pathway

Post-translational modifications of histones

Modifications of histone proteins influence changes in chromatin structure. Depending on the site, modifications may contribute to activation or inactivation of transcription.

Chromatin remodeling

The activity of chromatin-remodeling complexes depends on ATP, and as a result of their action, the manner of histone-DNA interaction changes. Remodeling complexes are involved in both transcriptional activation and repression.

Chen W, et al. Adv Protein Chem Struct Biol. 2017.
Histone variants

Chromatin remodeling complexes from the INO80/SWR family are responsible for the exchange of various histone variants in the histone octamer.

Histone variants - characteristic patterns

Some histone variants are spread throughout all or most of the chromosome, whereas others show specific distribution patterns. Histone variant distributions can be different on dosage-compensated sex chromosomes (like the mammalian inactive X), in sperm chromatin, or other highly specialized chromatin states.

Epigenetic mechanisms of regulation of gene expression

Epigenetic regulation of gene expression by ncRNAs

So far, the only known factor initiating epigenetic inheritance and distinguishing sequences that need to be silenced or activated is RNA

Epigenetic regulation of gene expression by ncRNAs

1. transcriptional silencing by siRNA (TGS)

2. regulation of expression by long non-coding RNAs (IncRNAs)

IncRNA vs mRNA

lincRNA (long intergenic non-coding RNA)

- autonomously transcribed ncRNAs, longer than 200 nt, whose sequences do not overlap with protein-coding genes
- in humans, they constitute more than half of IncRNA transcripts

LncRNA classification based on genomic location

IncRNA functions

Heat shock

Chen and Carmichael, WIREsRNA, 2010

Mechanisms of action of IncRNAs

ncRNAs recruit chromatin modifying complexes → histone modifications (H3meK27) and heterochromatin formation act as repressors or enchancers of transcription by binding to protein or DNA factors; may act as "baits" that bind transcription factors they mask the 5' splice site, resulting in intron retention, IRE recognition and translation

Modes of IncRNA Activity

IncRNAs may nucleate chromatin from either the same or different chromosomes and create compartments enriched for chromatin modifiers

one IncRNA may serve as a scaffold for multiple chromatin modifiers that alter different histone marks

higher-order chromatin loops appear to involve IncRNA

IncRNA may cotranscriptionally recruit chromatin-modifying factors to specific chromosomal loci

IncRNAs generate the dynamic assembly of nuclear structures (e.g. paraspeckles) by serving as scaffolds for proteins

LncRNA-mediated transcriptional regulation

Interaction with and recruitment of chromatin-modifying enzymes (e.g., histone methylases, acetylases, and deacetylases). Modulation of the chromatin state leads to activation or repression of local genes.

Interaction with other RNA-binding factors to form RNP complexes. RNPs can either promote transcription by recruiting key proteins to the target gene promoters or repress gene transcription by binding to existing gene repressors.

LncRNAs also have enhancer functions and help to change the chromatin architecture and recruit transcriptional machinery proteins to adjacent target gene locus to promote its transcription.

LncRNAs are also involved in the repression of some genes by acting as a decoy for the transcription factor.

Bhat SA, et al. Noncoding RNA Res. 2016

The diversity of IncRNAs in mammalian cells

- a. lincRNA long intergenic ncRNA
- b. NAT natural antisense transcripts
- c. MALAT1 i NEAT1_2
- d. sno-IncRNA snoRNA-ended IncRNA
- e. SPA 5' snoRNA-ended and 3'-polyadenylated lncRNA
- f. ciRNA circular intronic RNA
- g. circRNA circular RNA

	Category	Abbreviation	Specific examples	
	Classification based on transcript length			
	Long noncoding RNA	IncRNA		
	Long-intergenic noncoding RNA; large intervening noncoding RNA, long-intervening noncoding RNA	lincRNA	ANRIL [117], H19 [147], HOTAIR [18], HOTTIP [148], lincRNA-p21 [149],	
	Very long intergenic noncoding RNA	vlincRNA	XIST [150], Paupar [151] HELLP transcript [42],	
IncRNAs			Vlinc_21, vlinc_185, vlinc_377, vlinc_500 [29]	
	macroRNA		Airn, Gtl2lt, KCNQOT1, Lncat, Nespas (reviewed in [152]), STAiR1 [28]	
	Promoter-associated long RNA	PALR		
	Classification based on association with annotated protein-coding genes			
	Intronic ncRNA; stable intronic sequence RNA; totally intronic RNA, partially intronic RNA	sisRNA, TIN, PIN		
	Circular intronic RNAs	ciRNAs		
	Sense ncRNA	CIRINAS		
			D4054 40 (450)	
	Natural antisense ncRNA	asRNA, NAT	BACE1-AS [153], aHIF [154], Tsix [155]	
	Mirror antisense		Globin antisense [67]	
	Exonic circular RNAs	ecircRNAs	cANRIL [118]	
	Chimeric RNAs, trans-spliced RNAs, exon juxtaposition			
	Stand-alone ncRNAs made from 3'UTRs	uaRNA		
	Chromatin-interlinking RNA	ciRNA		
	Transcription start site-associated RNAs	TSSa-RNAs		
	Classification based on association with other DNA elements of known function			
	Enhancer-associated RNA	eRNA		
	Promoter-associated long RNA	PALR		
	Upstream antisense RNA	uaRNA		
	PROMoter uPstream Transcript	PROMPT		
	Telomeric repeat-containing RNA	TERRA		
	Classification based on protein-coding RNA resemblance			
	mRNA-like noncoding RNAs	mincRNAs		
	Long-intergenic noncoding RNA; large intervening noncoding RNA, long-intervening noncoding RNA	lincRNA	ANRIL [117], H19 [147], HOTAIR [18], HOTTIP [148], lincRNA-p21 [149], XIST [150]	
	Classification based on association with repeats		Mortinot	
	C0T-1 repeat RNA			
	Long interspersed nuclear element	LINE 1/2		
	Transcribed endogenous retroviruses			
	Expressed Satellite Repeats			
	Non-coding RNA driven by promoters within repeats	vlincRNAs, NASTs	Vlinc_21, vlinc_185, vlinc_377, vlinc_500 [29]	
	Polypurine-repeat-containing RNA	GRC-RNA		
	Transcribed pseudogenes		PTENP1 and KRASP1 [86]	
	Classification based on association with a biochemical pathway or stability			
	Nrd 1-unterminated transcript	NUT		
	miRNA primary transcripts		H19 (166)	
	piRNA primary transcripts			
	Cryptic unstable transcript	CUT		
		PROMPT		
	PROMoter uPstream Transcript			
	Xrn1-sensitive unstable transcript	XUT		
	Stable Uncharacterized Transcript, Stable Unannotated Transcript	SUT		
	Classification based on sequence and structure conservation		1000400 (00)	
	Transcribed-ultraconserved regions	T-UCR	UCR106 [95]	
	Hypoxia-induced noncoding ultraconserved transcript	HINCUT		
	Long-intergenic noncoding RNA; large intervening noncoding RNA,	lincRNA	HOTAIR [18], HOTTIP [148]	
	long-intervening noncoding RNA			

	ecific examples		
ssification based on expression in different biological states			
ng stress-induced noncoding transcript LSINCT			
poxia-induced noncoding ultraconserved transcript HINCUT			
n-Annotated Stem Transcript NAST			
assification based on association with subcellular structures			
romatin-associated RNA CAR			
romatin-interlinking RNA ciRNA			
clear bodies associated RNAs			
C2 associated RNAs			
issification based on function			
	RNA-a7 [108]		
RNA primary transcripts H19 tNA primary transcripts	9 [166]		
	ENP1 and KRASP1		
nRNA InaRNA function			
ANRIL Xist Target PRC1 or PRC1 in cis to mediate histone methylation in tra	inscriptional		
	gene silencing for dosage compensation, imprinting and developmental gene		
COLDAIR expression; ANRIL affects cell senescence			
(cnq1ot1	expression, Annie anects centercence		
MALAT1 Sequesters SR splicing factors to regulate alternative splicing	Sequesters SR splicing factors to regulate alternative splicing		
Sequesters SK splicing factors to regulate alternative splicing	Sequesters SK splicing factors to regulate alternative splicing		
PANDA p53-inducible, titrates away NF-YA to favor survival th during DNA	p53-inducible, titrates away NF-YA to favor survival th during DNA damage		
TERRA Controls telomerase access to telomeres in a cell-cycle manner	Controls telomerase access to telomeres in a cell-cycle manner		
	Targets DNMT3b in cis to the rDNA locus via an RNA:DNA:DNA triplex for DNA		
methylation and gene silencing	methylation and gene silencing		
RA Enhances insulator function of CTCF	Enhances insulator function of CTCF		
Gas5 Binds to glucocorticoid receptor as a decoy and titrates GR away	Binds to glucocorticoid receptor as a decoy and titrates GR away from target		
genes	genes		
incRNA-p21 Targets hnRNP-K in trans to mediate p53-dependent gene repres	Targets hnRNP-K in trans to mediate p53-dependent gene repression		
HOTTIP Bind to and localizes the MLL complex and H3K4me3 via chromos	Bind to and localizes the MLL complex and H3K4me3 via chromosomal looping		
for gene activation			
I/2 SBS Pairs with mRNAs via Alu repeats and targets them into a NMD pa	Pairs with mRNAs via Alu repeats and targets them into a NMD pathway		
HULC H19 miRNA decoys: HULC induces PRKACB translation, H19 interferes	miRNA decoys: HULC induces PRKACB translation, H19 interferes with let-7		
PTENP1 activity, PTENP1 depresesses PTEN production			
.INK RNAs Cellular signalling, activate of kinases, promote protein phoshory	Cellular signalling, activate of kinases, promote protein phoshorylation		
and an	central signaling, activate of kinases, promote protein phoshorylation		
1/2-sbsRNA STAUFEN1-dependent mRNA decay, induce mRNA degradation or stabilication			
TINCR	STAUFLINE-dependent mixing decay, induce mixing degradation of stabilication		
HOTAIR NRON Protein turnover, stimilate degradation of Snurportin-1 and Atax	Protein turnover, stimilate degradation of Snurportin-1 and Ataxin-1 (HOTAIR)		
or HIV proteins tat (NRON			

Cellular functions of IncRNAs

Cellular functions of IncRNAs

Xist modulates inactive X chromosome (Xi) architecture during X chromosome inactivation (XCI) by recruiting Xi to associate with the lamin B receptor (LBR) at the nuclear lamina to silence transcription

Xist ncRNA – X chromosome inactivation

- Dosage compensation one copy of the chromosome in females is epigenetically silenced
- RepA (repeat element) 1.6kb ncRNA (5' Xist) binds PRC2 complexes (Polycomb)
- Tsix protects the active X chromosome from silencing; combines X reactivation and stem cell reprogramming
- Tsix and Xite control allele selection and designate the active X chromosome
- Jpx and RepA are positive regulators of Xist

X chromosome inactivation: epigenetic silencing

Xist ncRNA triggers epigenetic changes that provide a "cellular memory" of the inactive state:

- replacement of histone H2A with macroH2A
- histone H3 methylation: H3K9, H3K27
- histone H4 deacetylation (?)
- DNA methylation /after chromosome inactivation

X chromosome inactivation: epigenetic silencing

dosage compensation in *Drosophila melanogaster* \rightarrow roX

- roX1/roX2 ncRNAs initiate histone modifications → in *Drosophila* males, increased X chromosome activity
- histone acetylation
- H3K9 demethylation

Cellular functions of IncRNAs

NEAT1 is an architectural IncRNA that nucleates paraspeckles. Upon cellular stress, altered NEAT1 transcription and processing lead to changes of paraspeckles. PSP, paraspeckle proteins.

MALAT1 interacts with SR proteins and alters their phosphorylation to impact pre-mRNA splicing in splicing speckles.

Long non-coding RNAs in nuclear sub-compartments

Cao Biological Procedures Online 2014

MALAT1/mascRNA

Polyadenylated Pol II transcript, precursor of mature MALAT1, and mascRNA

Processing of the precursor by RNase P (5') and RNase Z (3') releases 6.7 kb of MALAT1 and mascRNA (tRNA-like), exported to the cytoplasm upon addition of CCA

A model for the functions of MALAT1

Cellular functions of IncRNAs

SLERT = ncRNA snoRNA- ended IncRNA enhances pre-rRNA transcription; a member of the family of sno-IncRNAs

SLERT promotes Pol I transcription by binding DDX21 to alter its conformation, thereby releasing its inhibitory effect on Pol I

SLERT – Pol I transcription (human)

snoRNAs at both ends of SLERT are required for biogenesis and nucleolar localization

DDX21 RNA helicase forms ring structures around Pol I complexes \rightarrow suppression of pre-rRNA transcription

SLERT binds to DDX21 and modulates DDX21 rings to reduce Pol I suppression (so SLERT positively affects rDNA transcription)

SLERT-DDX21 interactions regulate differential rDNA expression

IncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription

TERRA – telomeric repeat-containing RNA

- in yeast and human cells
- polyadenylated Pol II transcript
- in subtelomeric and telomeric regions, component of telomeric heterochromatin
- association with telomeres and telomeric proteins (Trf1, Trf2)
- regulated by RNA surveillance factors (Rat1, Trf4, NMD factors, RNase H)
- regulates telomerase (telomere shortening) by creating RNA-DNA hybrids
- works in chromatin remodeling processes (development and differentiation)
- impact on telomere replication

rDNA silencing by pRNA and NoRC

Stark and Taliansky, Embo Rep., 2008; Mayer et al., Mol. Cell, 2006; Embo Rep., 2008; Schmitz et al., Gene Dev., 2010

rDNA silencing by pRNA and NoRC

Stark and Taliansky, Embo Rep., 2008; Mayer et al., Mol. Cell, 2006; Embo Rep., 2008; Schmitz et al., Gene Dev., 2010

NAT Regulation described in: ---- Plant NAT & IncRNA ---- Plant NAT only ---- Animal NAT ----- IncRNA ----- Speculative

