## Involvement of RNA metabolism in physiological processes: development and response to stress

dr Anna Golisz-Mocydlarz

## Levels of regulation

- I. Chromatin and transcription
- II. RNA processing: pre-mRNA splicing

(alternative splicing - AS) and 3' formation

- III. RNA stability
- IV. Regulation via microRNA and lncRNA































ABA synthesis is strongly induced in response to stress Water Potential -2 ABA -24 -20 -16 Leaf water otential (atm) µg/g dry weight -12 20 0 4 8 12 16 Hours of drought stress ABA levels rise during drought stress due in part to increased biosynthesis R.L. Croissant, , Bugwood. www.forestryimages.org . Zabadel, T. J. Plant Physiol. (1974) 53: 125-127.



There are many genes encoding PYR/PYL/RCARs The 14 PYR/PYL/RCARs in Arabidopsis (a) Soybean Glycine max 23 PYL9 RCAR1 At1g01360 - At4g01026 PYL7 RCAR2 Zea mays Corn 20 At5g53160 PYL8 RCAR3 Populus At4g27920 PYL10 RCAR4 Western poplar 14 At5g45860 PYL11 RCAR5 trichocarpa At5g45870 PYL12 RCAR6 Arabidopsis At4g18620 PYL13 RCAR7 Arabidopsis 14 At5g05440 PYL5 RCAR8 thaliana PYL6 RCAR9 At2g40330 Rice Oryza sativa 11 At2g38310 PYL4 RCAR10 At4g17870 Grape Vitis vinifera 8 At5g46790 YL1 RCAR12 YL3 RCAR13 Sorghum Sorghum bicolor 8 At1g73000 At2g26040 RCAR1 Barrel medic Medicago 0.3 0.2 0.1 0 6 (a model legume) truncatula Klingler, J.P., Batelli, G., and Zhu, J.-K. J. Exp.Bot. 61: 3199-3210 , Christmann, A., and Grill, E. (2010) Trends Plant Sci. 15: 395-401 Raghavendra, A.S., Gonugunta, V.K.











| Splicing    |            | ADI | iotic stress un | der which | an <i>in vivo</i> | role was i | reported <sup>a</sup> |
|-------------|------------|-----|-----------------|-----------|-------------------|------------|-----------------------|
|             |            | ABA | Drought         | Salt      | Cold              | Heat       | Cadmium               |
| R proteins  | SR45       | -   | х               | Х         | ×                 | ×          | X                     |
|             | SR34b      | ×   | Х               | Х         | Х                 | Х          | -                     |
|             | RS40       | -   | Х               | -         | Х                 | Х          | X                     |
|             | RS41       | -   | Х               | -         | X                 | X          | Х                     |
| GRPs        | GRP2       | ×   | -               | Х         | Х                 | X          | X                     |
|             | GRP7       | X   | -               | -         | -                 | X          | X                     |
|             | RZ-1a      | -   | -               | -         | Х                 | Х          | Х                     |
| BPs         | CBP20      | -   | -               | -         | Х                 | Х          | Х                     |
|             | CBP80/ABH1 | -   | -               | -         | Х                 | х          | Х                     |
| Spliceosome | SKIP       | X   | -               | -         | Х                 | Х          | Х                     |
| components  | SAD1       | -   | -               | -         | Х                 | Х          | Х                     |
|             | LSm4       | -   | Х               | -         | Х                 | Х          | Х                     |
|             | RDM16      | -   | Х               | -         | X                 | Х          | Х                     |
|             | STA1       | -   | -               | -         | -                 | -          | ×                     |











-



























| Leaf development miR<br>miR<br>Leaf development miR<br>miR<br>miR<br>Leaf polarity miR<br>miR<br>miR<br>miR<br>miR<br>miR | R167         | ARF10<br>NAC1<br>ARF8    | [122,123]                                        |                                 |                            |                                                |                                            |
|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|--------------------------------------------------|---------------------------------|----------------------------|------------------------------------------------|--------------------------------------------|
| miR<br>miR<br>Iteaf polarity<br>MiR<br>miR<br>miR                                                                         |              | ARF<br>TIR1/F-box AFB    | [122,123]<br>[130]<br>[122]<br>[114]<br>[15,124] |                                 |                            |                                                |                                            |
| Leaf polarity miR<br>miR<br>miR<br>miR                                                                                    | R164         | MYB<br>NAC1              | [48,127,128<br>[132]                             | Role                            | miRNA<br>family            | Target families/genes                          | Reference(s)                               |
| Leaf polarity miR<br>miR<br>miR                                                                                           | R172         | HD-ZIPIII<br>AP2<br>TCP  | [131]<br>[127]<br>[128]                          | Adaptive responses<br>to stress | miR156<br>miR159           | SBP<br>MYB                                     | [37,43,44,103]<br>[16,37,43,48,49]         |
|                                                                                                                           | R166<br>R168 | HD-ZIPIII<br>AGO1<br>ARF | [121,131]<br>[120]<br>[114]                      |                                 | miR160<br>miR167<br>miR168 | ARF10<br>ARF8<br>AGO1                          | [37,50,100]<br>[37,42,43]<br>[37]          |
| miR                                                                                                                       | R160<br>R164 | ARF10<br>NAC1            | [122,123,1<br>[132,133]                          |                                 | miR169<br>miR171<br>miR319 | NFY/MtHAP2-1<br>SCL<br>TCP                     | [37,43,52,110,136<br>[37,43]<br>[16,37,43] |
| Flowering time <u>miR</u>                                                                                                 | R319<br>R156 | AP2<br>TCP<br>SBP        | [134]<br>[127,128]<br>[125-127]                  |                                 | miR393<br>miR395<br>miR396 | TIR1/F-box AFB<br>APS/AST<br>GRF               | [15,16,37,42,43]<br>[15,16,37]<br>[16,37]  |
| miR                                                                                                                       | R172         | MYB<br>AP2<br>TCP        | [48]<br>[127,135]<br>[127]                       |                                 | miR397<br>miR398           | Laccases, Beta-6-tubulin<br>CSD                | [15,16,37]<br>[15,19,37,43,53,7]           |
| mite                                                                                                                      | 1015         |                          | [127]                                            |                                 | miR399<br>miR408           | UBC24/PHO2<br>Plastocyanin                     | [36,37,75,76]<br>[16,37,44]                |
|                                                                                                                           |              |                          |                                                  | Regulation of miRNA             | miR162<br>miR168<br>miR403 | DCL1<br>AGO1<br>AGO2                           | [137]<br>[120]<br>[114]                    |
|                                                                                                                           |              |                          |                                                  | Others                          | miR158<br>miR161           | At1g64100<br>PPR                               | 1                                          |
|                                                                                                                           |              |                          |                                                  |                                 | miR163<br>miR173<br>miR174 | At1g66700, At1g66690<br>At3g28460<br>At1g17050 |                                            |
| Khraiwesh et al. 2011 Bioch                                                                                               |              |                          |                                                  |                                 | miR175                     | At5g18040, At3g43200,<br>At1g51670             |                                            |















| Mechanism of miRNAs<br>regulation of cancer                                                                                                                                         | MicroRNAs                                                                                                                                                                                                                                                                                                                                                                                                       | Target pathway/gene product                                                                                                                                                                                                                                                                                                                                                                                                                                               | References                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| † Proliferation                                                                                                                                                                     | ↑ miR-93; ↑ miR-200c;<br>↑ miR-221; ↑ miR-222;<br>↓ miR-7; ↓ miR-126;<br>↓ miR-140-5p; ↓ miR-320                                                                                                                                                                                                                                                                                                                | TIMP2, P27 <sup>Kip1</sup> , SOX4, EGFR, ADAM9, PDGFRA                                                                                                                                                                                                                                                                                                                                                                                                                    | Bai et al. (2017), Guan et al. (2017), Lan et al. (2015),<br>le Sage et al. (2007), Wang et al. (2015, 2016), Web-<br>ster et al. (2009)                                                                                                                                                                                                           |
| 1 Apoptosis                                                                                                                                                                         | † miR-10b; † miR-21; † miR-25; † miR-155; †<br>miR-222; ↓ miR-143; ↓ miR-195; ↓ miR-365; ↓<br>miR-491-5p                                                                                                                                                                                                                                                                                                        | Bcl-2, Bcl-XL, PUMA, PTEN, DR4, TP53, SOCS1,<br>SOCS6, AKT, Ras/MEK/ERK                                                                                                                                                                                                                                                                                                                                                                                                   | Bahena-Ocampo et al. (2016), Gu et al. (2018), Guo<br>et al. (2012), Hatley et al. (2010), Jiang et al. (2014),<br>Li et al. (2017c), Liu et al. (2012), Razumilava et al.<br>(2012), Song et al. (2017), Wu et al. (2017), Xue<br>et al. (2016), Zhu et al. (2015)                                                                                |
| ↑ EMT                                                                                                                                                                               | ⊥ miR-30a; ↓ miR-33b;<br>↓ miR-101; ↓ miR-381;<br>↓ miR-200 family (miR-200a)                                                                                                                                                                                                                                                                                                                                   | $\label{eq:2EB1} \begin{array}{l} ZEB1/ZEB2, vimentin, Wnt/\beta-catenin/ZEB1, SOX4, \\ Snai1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                | Cheng et al. (2012), Cong et al. (2013), Guo et al.<br>(2014), Korpal et al. (2008), Kumarswamy et al.<br>(2012), Liu et al. (2014), Pang et al. (2017), Qu et al<br>(2015                                                                                                                                                                         |
| ↑ Invasiveness<br>↑ Migration<br>↑ Metastases<br>↑ Chemo/radio-resistance                                                                                                           | <pre>† miR-21; † miR-25; † miR-122; † miR-130; † miR-<br/>141/200c;<br/>f miR-182-5p; † miR-548j;<br/>f miR-182-5p; f miR-127;<br/>f miR-1127-3p; f miR-129-5p;<br/>f miR-210-3p; f miR-133</pre>                                                                                                                                                                                                               | TIMP3, PTEN, FBXW7, KRAS, MAPK, ITGA6,<br>TGFpR2, VEGF-A, DUSP4, FGFRL1, RAB27A,<br>FNDC3B, Dicer, TNS1                                                                                                                                                                                                                                                                                                                                                                   | Choi et al. (2016), Duan et al. (2016), Fan et al.<br>(2018), Gong et al. (2015), Guo et al. (2013), Li et al<br>(2017a), Li ue t al. (2013), Martín del Campo et al.<br>(2015), Wang et al. (2018a), Xu et al. (2017, 2018),<br>Yang et al. (2017), Zhan et al. (2016                                                                             |
| † Adaptation to hypoxia                                                                                                                                                             | ↑ miR-24; ↑ miR-182; ↑ miR-210                                                                                                                                                                                                                                                                                                                                                                                  | FIH1, HIF-1a, PHD2, PTPN1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Li et al. (2014b, 2015c), Roscigno et al. (2017)                                                                                                                                                                                                                                                                                                   |
| ↑ Angiogenesis                                                                                                                                                                      | ↑ miR-130a; ↑ miR-139; ↑ miR-155; ↑ miR-182; ↑<br>miR-200;<br>↑ miR-210; ↑ miR-449a;<br>⊥ miR-140-5; ⊥ miR-497                                                                                                                                                                                                                                                                                                  | VEGF-A, VEGFR2, RASA1, c-MYB, VHL,<br>FGFRL1, CRIP2, HIF-1α                                                                                                                                                                                                                                                                                                                                                                                                               | Du et al. (2015), Kong et al. (2014), Li et al. (2015a),<br>Lu et al. (2017), Shi et al. (2016), Wang et al.<br>(2014a), Yang et al. (2016, 2018)                                                                                                                                                                                                  |
| DUSP4 Dual Specificity I<br>Fibronectin Type III Don<br>activated protein kinase 4<br>protein phosphatase non-r<br>p21 protein activator 1, <i>SI</i><br>growth factor beta recepto | rate, ] decrease<br>and metalloproteases 9, AKT protein kinase B, Bel-sL I<br>Phosphatase 4, FBXW7 E-box and WD-40 domain pro<br>nain Containing 3B, HIP1a hypoxia-inducible factor<br>PDGFRA platel-derived growth factor receptor A,<br>eceptor type 1, PUMA the p53 upregulated modulator<br>M11 snail family zinc imper 1, SOCS1 suppressor of c<br>e-7, TIMP2 tissue inhibitor of metalloproteinase 2, TIM | 3-cell lymphoma-extra large, Bcl-2 B-cell lymphoma,<br>stein 7, FGFRL1 fibroblast growth factor receptor-like<br>(a, ITGA6 integrin subunit-α 6, RR45 Ki-na2 Kirsten<br>HD2 hypoxia-indacible factor projh hydroxylae 2, P<br>of apotosis, p2 <sup>2Kwl</sup> cyclim-dependent kinase inhibitor<br>tokine signaling 1, SOZ65 suppressor of cytokine sign<br>P2 tissue inhibitor of metalloproteinases 3, TR51 Tensi<br>-binding homeobox 1, ZEB2 Zine finger E-bao-bindin | <ol> <li>FIHI factor-inhibiting HIF hydroxylase 1, FNDC:<br/>rat sarcoma viral oncogene homolog, MAPK mitoge<br/>TEN phosphatase and tensin homolog, PTPN1 tyrosin<br/>1B, RAB27A Ras-related protein Rab-27A, RASA 1 R,<br/>aling 6, SOX4 the SRV-box 4, TGFjR2 the transformi<br/>n 1, TF53 tumor protein p53, VEGF vascular endothel</li> </ol> |

Samec et al. Journal of Cancer Research and Clinical Oncology (2019) 145:1665-1679







microRNA/NMD<sub>Undifferentiated</sub> and Neuronal differentiation: neuronal progenitor cells circuit regulates miR-128 Elevated miR-128 levels repress UPF1 and MLN51/Barentz express niR-128 neuronal development ▶ miR-128 targets the 3 UTR of the central NMD factor UPF1 and the EJC core MLN51/ MLN51/ component MLN51 • downregulation of ay of NMD targets ay of NMD targe ed in ne NMD factors by miR-**128 represses NMD** activity in human and mouse cells EJC EJC Ter Ter MLN51/ ▶ miR-128 is drastically MLN51 upregulated during al differentiatio leuronal differentiation brain development and neuronal maturation 1A 0 0 0 Ottens & Gehring 2016 Eur J Physiol







## Role of tRNA-derived stress-induced RNAs (tiRNAs) in cancer

| Cancer type       | tiRNA                                                                                                                                  | Sample type             | Function                                                  | Reference                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| Brest cancer      | 5' tiRNA-Arg/Asn/Cys/Gln/Gly/Leu/Ser/Trp/<br>Val/Asp/Lys                                                                               | Serum                   | Associated with<br>clinicopathological<br>characteristics | Dhahbi et al. (2014)                                                  |
|                   | 5' tiRNA-Val                                                                                                                           | Cell, tissue, serum     | Suppress cell proliferation,<br>migration and invasion    | Mo et al. (2019)                                                      |
| Prostate cancer   | 5'-tiRNA derived from the pseudogene<br>tRNA-Und-NNN-4-1                                                                               | Seminal fluid           | Noninvasive biomarker for<br>cancer screening             | Dhahbi et al. (2018)                                                  |
|                   | 5'-tiRNA-Asp-GUC, 5'-tiRNA-Glu-CUC<br>5'-SHOT-RNA <sup>AspGUC</sup> , 5'-SHOT-RNA <sup>HisGUG</sup> ,<br>5'-SHOT-RNA <sup>LysCUU</sup> | Serum, tissue<br>Cell   | Prognostic parameter<br>Enhance cell proliferation        | Zhao et al. (2018)<br>Honda and Kirino (2016),<br>Honda et al. (2015) |
| Lung cancer       | 5'-tiRNA-Leu-CAG                                                                                                                       | Cell, tissue, serum     | Promote cell proliferation<br>and cell cycle              | Shao et al. (2017)                                                    |
| Gastric cancer    | tiRNA-5034-GluTTC-2                                                                                                                    | Cell, tissue,<br>plasma | Biomarker for diagnosis                                   | Zhu et al. (2019)                                                     |
| Colorectal cancer | 5'-tiRNA-Val                                                                                                                           | Cell, tissue, serum     | Promote cell migration,<br>invasion and metastasis        | Li et al. (2019)                                                      |
|                   |                                                                                                                                        |                         |                                                           |                                                                       |
|                   |                                                                                                                                        |                         |                                                           |                                                                       |
|                   |                                                                                                                                        |                         |                                                           |                                                                       |
|                   |                                                                                                                                        |                         | Tao et al., 2019 Jo                                       | urnal of Cellular Physiology                                          |

59

## Oncogenic or tumor-suppressive non-coding RNAs with in vivo experimental evidence

| Name             | ncRNA Class | Cancer Types<br>Examined | In Vivo Experimental<br>Techniques Used                                                                                 | Cancer-Related<br>Mechanisms and/or<br>Functions of ncRNA                                                                                                                                          | References                                                           |  |  |
|------------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Oncogenic ncRNAs |             |                          |                                                                                                                         |                                                                                                                                                                                                    |                                                                      |  |  |
| miR-155          | miRNA       | lymphoma                 | transgenic overexpression<br>mouse model, treatment with<br>antimiRs                                                    | targets SHIP1 transcript, a<br>negative regulator of AKT, to<br>increase proliferation and<br>survival                                                                                             | O'Connell et al., 2009; Babar<br>et al., 2012; Cheng<br>et al., 2015 |  |  |
| HOTAIR           | IncRNA      | breast                   | siRNA knockdown,<br>overexpression in mouse<br>xenografts                                                               | recruits PRC2, LSD1/<br>CoREST/REST chromatin<br>modifying complexes,<br>scaffolds transcription<br>factors at target promoters of<br>genes involved in invasion,<br>metastasis, and proliferation | Gupta et al., 2010; Li<br>et al., 2016b                              |  |  |
| THOR             | IncRNA      | lung, melanoma           | CRISPR-Cas9 knockdown,<br>overexpression in mouse<br>xenografts; transgenic<br>knockout, overexpression in<br>zebrafish | binds IGF2BP1 to stabilize<br>interactions with oncogenic<br>target mRNAs, in turn<br>stabilizing those transcripts<br>and promoting proliferation                                                 | Hosono et al., 2017                                                  |  |  |
| BRAFP1           | pseudogene  | B cell lymphoma          | transgenic overexpression<br>mouse model                                                                                | acts as a ceRNA for miRNAs<br>that target the BRAF<br>transcript, leading to<br>increased BRAF expression,<br>MAPK signaling, and<br>proliferation                                                 | Karreth et al., 2015                                                 |  |  |
| circCCDC66       | circRNA     | colorectal               | siRNA knockdown in mouse<br>xenografts                                                                                  | sponges several miRNAs<br>that target oncogenic<br>transcripts (e.g., MYC),<br>promoting proliferation,<br>migration, and invasion                                                                 | Hsiao et al., 2017<br>Slack & Chinnaiyan 2019 Cell                   |  |  |





