All RNAs great and small

Institute of Genetics and Biotechnology University of Warsaw

lecture 3

RNA enzymes and complexes RNA granules RNA decay

RNA enzymes and complexes

RNA processing and decay machinery: RNases

Protein	Function	Characteristics
Exonucleases	<u>5'→3'</u>	
Xrn1	cytoplasmic, mRNA degradation	processsive
Rat1/XRN2	nuclear, pre-rRNA, sn/snoRNA, pre-mRNA processing and	degradation
Rrp17/hNOL12	nuclear, pre-rRNA processing	
Exosome 3'->	<u>5'</u> multisubunit exo/endo complex	subunits organized as in bacterial PNPase
Rrp44/Dis3	catalytic subunit	Exo/PIN domains, processsive
Rrp4, Rrp40	pre-rRNA, sn/snoRNA processing, mRNA degradation	
Rrp41-43, 45-46	participates in NMD, ARE-dependent, non-stop decay	
Mtr3, Ski4		
Mtr4	nuclear helicase cofactor	DEAD box
Rrp6 (Rrp47)	nuclear exonuclease (Rrp6 BP, cofactor)	RNAse D homolog, processsive
Ski2,3,7,8	cytoplasmic exosome cofactors. SKI complex	helicase, GTPase
<u>Other 3'→5' ar</u>	<u>nd 5'→3'</u>	
Rex1-4	3'-5' exonucleases, rRNA, snoRNA, tRNA processing	RNase D homolog
DXO	5'-3' exonuclease in addition to decapping	
ERI1	3'-5' exonuclease, rRNA processing, histone mRNA decay	
<u>mtEXO 3'→5'</u>	mitochondrial degradosome RNA degradation in yeast	
Suv3/ Dss1	helicase/ 3'-5' exonuclease	DExH box/ RNase II homolog
Deadenylation		
Ccr4/NOT/Pop2	major deadenylase complex (Ccr, Caf, Pop, Not proteins)	Ccr4- Mg ²⁺ dependent endonuclease
Pan2p/Pan3	additional deadenylases (poliA tail length)	RNase D homolog, poly(A) specific nuclease
PARN	mammalian deadenylase	RNase D homolog, poly(A) specific nuclease
Endonucleases	<u>}</u>	
RNase III		
-Rnt1	pre-rRNA, sn/snoRNA processing, mRNA degradation	dsRNA specific
-Dicer, Drosha	siRNA/miRNA biogenesis, functions in RNAi	PAZ, RNA BD, RNase III domains
Ago2 Slicer	mRNA cleavage in RNAi	
SMG6	mRNA cleavage in NMD	PIN domain
RNase P	5' tRNA end processing	RNP complex
RNase MRP	pre-rRNA processing	RNP complex, similar to RNase P
RNase L	rRNA degradation in apoptosis	oligo 2-5A dependent (ppp(A2'p) _n A)
ELAC2/Trz1	3' tRNA endonuclease	PDE motif and Zn ²⁺⁻ binding motif
Utp24 Nob1 Las1	pre-rRNA processing at sites A0, D and C2	

Eukaryotic auxiliary decay factors

Protein

Function / Characteristics

5'->3' decay: decapping

Dcp1/Dcp2	Dcp2- pyrophosphatase catalytic activity, Nudix domain, Dcp1- protein binding
Hedls/Ge-1/Edc4	decapping cofactor, WD40 domain
Edc1,2,3	decapping enhancers, stimulate cap binding/catalysis, Edc1-2 (yeast), Edc3 (all eykaryotes)
Dhh1	DexD/H ATPase, decapping activator by translation repression
Lsm1-7	decapping activator, heptameric complex, binds mRNA 3' end-U rich tracts
Pat1	decapping activator by translation repressio
DXO	pyrophoshohydrolase, 5' decapping endonuclease, deNADding, 5'OH hydrolase

TRAMP complex: exosome cofactors, nuclear RNA QC, polyadenylation-dependent degradation,

Trf4/Trf5 (hTRF4-2)	nuclear alternative poly(A) polymerases	
Mtr4 (hMTR4)	DEAD box helicase	
Air1/Air2 (ZCCHC7)	RNA binding proteins	

NEXT and PAXT complexes: exosome cofactors, nuclear RNA QC

hMTR4	DEAD box helicase
RMB7/ZCCHC8	NEXT RNA binding proteins
ZFC3H1	PAXT RNA binding protein
PABPN1	PAXT nuclear polyA binding protein

Nrd1-Nab3-Sen1 complex: PollI termination of ncRNAs, TRAMP-depdendent degradation

Nrd1	Pol II C-terminal domain (CTD) binding, RNA binding
Nab3	RNA binding
Sen1	RNA helicase

CBCA-NEXT, CBCA-PAXT and RESTRICTOR complexes: nuclear RNA QC

CBC CBCA ARS2	nuclear cap binding complex RNA binding, Pol II transcription, termination, RNA decay
ZC3H18	NEXT, zinc finger protein
ZFCH1	PAXT nuclear polyA binding protein
ZC3H4, WDR82	RESTRICTOR Pol II termination, RNA Decay by NEXT and exosome complexes

EXOSOME: 3'→5' decay machinery

- 3' \rightarrow 5' exo/endo nuclease complex
- 10 core components (RNA BP)
- catalytically active exo hydrolytic Dis3/Rrp44 (RNase II)
- PIN domain with endo activity
- nuclear cofactors- RNA BP Rrp47, nuclease Rrp6 (RNase D), RNA helicase Mtr4
- cytoplasmic cofactors- Ski2-3-8 complex (RNA helicase Ski2), GTPase Ski7
- subtrates- processing and/or degradation of almost all RNAs

EXOSOME: 3'→5' decay machinery: functions

NUCLEAR: Rrp6 and core components have partly separate functions

- 3' -end processing of 5.8S rRNA, sn/snoRNAs, tRNAs, SRP RNA
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of other ncRNAs: CUTs, PROMPTS CYTOPLASMIC:
- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay, ARE-dependent decay

Polyadenylation-mediated nuclear discard pathway for defective and excessive RNAs

- hypomodified tRNAs, pre-tRNAs
- ncRNAs:
 - sn/snoRNAs, rRNAs
 - CUTs (Cryptic Unstable Transcripts)
- some mRNAs

- TRAMP interacts with
- exosome via Mtr4
- Nrd1/Nab3/Sen1 complex

LaCava et al., Cell, 2005; Vanacova et al., PLoS Biol. 2005; Wyers et al., Cell, 2005; Lubas et al. Mol. Cell, 2011

TRAMP + Exosome = nuclear RNA surveillance

<u>Mtr4</u> – DEAH box RNA helicase Air1/2 – RNA binding proteins Trf4/5 – poly(A) polymerases

Substrate specificity conferred by Trf4/5 Ai1/2 are highly redundant

SUBSTRATES TRAMP 4-2: mRNA, ncRNA

TRAMP 4-1: mRNA, introns

TRAMP 5-1: pre-rRNA

TRAMP

- interacts with the exosome via Mtr4 role in degradation
- role in sn/snoRNA 3' end processing together with the exosome
- interacts with Nrd1/Nab3 complex role in ncRNA Pol II termination
- role in transcription silencing in *S. cerevisiae* and *S. pombe* (Cid14)

 ZFC3H1 (Zn-knuckle protein) links MTR4 with **PABPN1** in **PAXT**

- ZFC3H1/PABPN1 and RBM7/ZCCHC8 interact with MTR4 in a mutually exclusive manner
- PAXT and NEXT direct distinct RNA species for nuclear exosome degradation
- PAXT targets tend to be longer and more extensively polyadenylated than NEXT targets

mammals

Lubas et al. Mol. Cell, 2011; Meola et al., . Mol. Cell, 2016

EXOSOME with TRAMP, NEXT and PAXT

Schmid and Jensen., Nat. Rev. Mol. Cel. Biol., 2018

EXOSOME with TRAMP, NEXT and PAXT

XRN family: $5' \rightarrow 3'$ processive exonucleases

Kastenmayer and Green, 2000, PNAS

NUCLEAR Rat1/XRN2

Crystal structure of *S. pombe* Rat1/Rai1 complex

- with Rai1 activator (5' -ppp pyrophosphohydrolase and phoshodiesterase-decapping nuclease)
- 5' -end processing of 5.8S and 25S rRNAs, snoRNAs
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of some ncRNAs: CUTs
- transcription termination of Pol I and II (torpedo mechanism)

CYTOPLASMIC XRN1

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay,

ARE-dependent decay

- degradation of miRNA-dependent mRNA cleavage products (in plants)
- degradation of some ncRNAs: CUTs, SUTs, XUTs

XRN1 and Rat1/XRN2 have deNADding and deFADding activity

Xiang et al, 2009, Nature

DCP/NUDT- decapping enzymes

• Dcp1/Dcp2 complex participates in mRNA 5' decay

- catalyses the reaction m⁷GpppX-mRNA -> m⁷GDP + 5'p-mRNA
- Dcp2 is the catalytic subunit (pyrophosphatase Nudix domain)
- Dcp1 is required for activity *in vivo*, interacts with other proteins

Dcp2

(yeast Lsm1-7, Dhh1, Pat1, Edc1-3, Upf1-3)

Base 1

Ó(CH₃)

• Dcp1/Dcp2p is regulated by Pab1 and activating factors

She et al. Nat.Struct. Mol. Biol, 2004

Wang et al. PNAS, 2002

NUDT proteins (22):

in vivo decapping Nudt16, Nudt3 (mammals) *in vivo* deNADding Nudt12 (mammals)

- DcpS: HIT pyrophosphatase ("histidine triad" on the C-terminus)
- catalyses the cleavage of m⁷GDP -> m⁷GMP + Pi remaining after decapping during mRNA 5' decay
- cooperates with the exosome during mRNA 3' decay
- (m⁷GpppX-oligoRNA -> m⁷GMP+ pp-oligoRNA)
- functions as an asymmetric dimer

ŃH2

LSM proteins

Achsel et al, EMBO J, 2001

Involved in pre-mRNA splicing

- associates with U6 snRNA
- required for U6 RNA accumulation and U6 snRNP biogenesis
- interacts with the U4/U6.U5 tri-snRNP

Functions in mRNA decapping and decay

- activator of decapping
- interacts with components of the mRNA decapping and degradation machinery (XRN1, DCP1/2, PAT1)

NNS - TRAMP - exosome

INTEGRATOR

Integrator complex

- recruited contransctiptionaly to snRNA promoter
- interacts with Pol II CTD (Ser7-P/Ser2-P dyad)
- cleaves pre-snRNA at 3'box (endonuclease Int11)
- involved in transcription termination at snRNA genes
- contributes to transcription termination at mRNA genes (intronless in particular)
- promotes transcription elongation by nascent transcript cleavage (PollI release)

ACTIVITY	SUBSTRATE	MmDXO	At DXO1
5'-3' exoribonuclease	p-RNA	+++	+
Pyrophosphohydrolase	ppp-RNA	+++	-
Decapping (unmethylated cap)	Gppp-RNA	+++	-
Decapping (mature cap)	m ⁷ Gppp-RNA	+++	-
DeNADding	NppA-RNA	++++	+++

Additional activities:

- 5' OH RNA hydrolase

- FAD and CoA decapping nuclease

A. Kwaśnik, PhD thesis, 2019

RNP granule assembly

by protein-protein and RNA-RNA interactions Assembly promoted by:

- Longer RNA length
- High local concentrations
- RNAs with increased ability to interact

4 fly

Multivalent RNA-binding proteins

And

Treeck and Parker, Cell, 2018 Verdile et al, Front Genet, 2019

Granule

Energy

A flo

Phase transition

Droplets, MLOs (Membraneless Organelles) Liquid-Liquid Phase Separation (LLPS) Condensates

Formed by unstructured protein domains around RNAs

IDR - Intrinsic Disordered Domains *PLD* - Prion-Like Domains

Organize several cellular processes:

- Heterochromatin structure (HP1)
- Transcription (Mediator, Pol II CTD)
- Processing (nucleolus, spliceosome, SR proteins, Cajal bodies)
- RNA retention and storage (Nuclear speckles, Paraspeckles, P-bodies, Stress Granules)
- RNA decay (degradosome)
- Protein modificarion and degradation (autophagosome, proteasome)

Membraneless Organelles

Verdile et al, Front Genet, 2019

Cellular Condensates

Banani et al, Nat Rev Cell Mol Biol, 2017

Wegener and Müller-McNicoll, Sem Cell Dev Biol 2018

Cajal bodies

Matera and Shpargel, Curr. Op. Cel. Biol., 2006

Cytoplasmic P-bodies and Stress Granules

mRNA storage mRNA decay

SG: global translation halts upon stress, mRNAs bound to the translational machinery and other proteins form SGs.

PB: translationally stalled mRNAs devoid of initiation factors shuttle to PBs.

Chantarachot and Bailey-Serres, Plant Phys, 2018

Dynamic biomolecular condensates Formed by phase separation of RNAs and proteins Role in translational control and proteome buffering upon translational arrest (PB) and stress (SG)

SG Stress Granules

Translation in SGs

- nontranslating mRNAs are preferentially recruited to SGs
- mRNAs in SGs can undergo translation (complete cycle)
- translating mRNAs can enter, leave, or stably localize to SGs
- translation in SGs mainly, but not only, occurs on mRNAs enhanced under stress

(shown using single-molecule mRNA imaging, SunTag)

mRNA STABILITY

Elements *in cis*:

mRNA general decay in the cytoplasm

mRNA degradation in the cytoplasm

mRNA degradation in the cytoplasm

 $DEADENYLATION \longrightarrow RELEASE OF RIBOSOMES \longrightarrow RELEASE OF TRANSLATION FACTORS$ $\longrightarrow RECRUITMENT OF DECAY FACTORS \longrightarrow RNA DECAY$

RNA decay in the nucleus

- Unspliced pre-mRNAs
- 3'-end unprocessed pre-mRNAs
- Unpackaged mRNAs (wrong mRNPs)
- mRNAs retained in the nucleus (export defect)
- Transcripts retained at chromatin
- Aberrant ncRNAs
- Unmodified tRNAs
- Excessive rRNAs and tRNAs

Schmid and Jensen, Chromosoma., 2008

mRNA quality control decay in the cytoplasm

NMD – Nonsense Mediated Decay (mRNAs with premature STOP codon)

NGD – **No-Go Decay** (ribosome stuck on an obstacle)

NSD – **Non-Stop Decay** (mRNAs with no STOP codon)

Problems with a stalling ribosome during translation

(A) Improper termination

rRNA surveillance

NRD- Nonfunctional rRNA Decay

Mature aberrant ribosomes are eliminated in the cytoplasm

Mms1 & Rtt101 subunits of E3 ubiquitin ligase complex

Dom34 & **Hbs1** factors involved in NGD and NSD

Lafontaine, TiBS.,2010

185 NRD

- Ribosome stalling due to decoding error
- Recognition of the stalled ribosome

- Ribosome ubiquitination
 K212 of RPS3 is monoubiquitinated by Mag2
 followed by polyubiquitination by Hel2 or Rsp5
- **Ribosome dissociation** Subunit dissociation by the Ski2-like RNA helicase **Slh1** in the **RQT** complex
- 18s rRNA degradation
 by Xrn1 or exosome

18S NRD factors are also involved in RQC
rRNA surveillance

18S Non-functional rRNA Decay

2. Fap1 senses individual stalled 80S ribosomes

185 NRD

- detects non-functional ribosomes (mutation in the decoding center 18S rRNA)
- or stalled monosomes
- stalled ribosomes recognized by Mag2
 E3 ligase, RPS3 monoUb Fap1 E3 ligase,
 RPS3 polyUb
- non-functional ribosomes are degraded

Ribosome Quality Control - RQC

- detects collided ribosomes
- stalled disome recognized by Hel2 E3
 ligase, RPS10-polyUb
- ribosomes are released and recycled

Ribosome-associated Quality Control - RQC

Co-translational mRNA, peptide and ribosome QC

Ribosome-associated Quality Control - RQC

Brandman and Hegde, NatStrMolBiol 2016; Sitron and Brandman, AnnRevBiochem, 2020; Kim and Zaher TiBS, 2021

Ribosome stalling and collision

Ribosome stalling \rightarrow Ribosome collision \rightarrow Recognition by the E3 Ub ligase Hel2/ZNF589 \rightarrow Ubiquitination of ribosomal proteins (RPS3, RPS20, RPS19)

But ribosome stalling does not always lead to collision

RP ubiquitination in the 40S

Ubiquitination of specific ribosomal proteins (RPs) by ubiquitin ligases serves to resolve stalled ribosomes

Ribosome rescue

Ribosome collision

Recognition by Hel2/ZNF589

Ubiquitination of RPs (RPS3, RPS20, RPS19)

Endonucleolytic mRNA cleavage by Cue2/NONU-1

Ribosome splitting/disassembly - by Dom34-Hbs1-Rli1 (Pelota/HBS1L or GTPBP2 /ABCE1) or

RQT (ribosome quality control trigger)
 complex Slh1, Cue3/Rqt3, and Rqt4

mRNA degradation (optional)

Vind et al, NAR, 2020

Recognition of tRNA-obstructed 60S by Rqc2/NEMF component of RQC. Recruitment of Ltn1/Listerin

Ubiquitination of the nascent chain Lys residues by E3 Ub ligase Ltn1/Listerin

Alernative: CAT-tailing by Rqc2/ NEMF to expose Lys residues buried in the ribosome

Recruitment of ATPase Cdc48/VCP by ubiquitination

Extraction of the nascent chain by Cdc48/VCP and tRNA by Vms1/ ANKZF1

Delivery of the polypeptide to the proteasome by Cdc48/VCP. Polypeptide degradation. 60S recycling

If ubiquitylation of the nascent polypeptide fails, CAT tail is added by Rqc2 to extract the polypeptide

- CATylation results in - Ltn1-dependent degradation of the nascent peptide
- nascent chain aggregation
- activation of stress signaling

CAT tail - Ala and Thr extension

Canonical RQC

Ford et al, Cell Rep, 2024

NEXT LECTURE:

Global analyses of RNAs and RNPs

Recognition of stalled ribosomes differs for internally and terminally stalled ribosomes Hel2/ZNF598: detection of internally stalled ribosomes Hel2/ZNF598 probably (i) recognizes the rotated conformation of stalled ribosomes or (ii) senses collisions between adjacent ribosomes and binds to disomes Hel2/ZNF598 marks 80S ribosomes by ubiquitylating their 40S subunits Hel2 mono- and diubiquitylates uS10 and uS3, forming K48- and K63-linked ubiquitin chains on uS10 ZNF598 monoubiquitylates the 40S ribosomal proteins eS10 and uS10

Asc1/RACK1: detection of internally stalled ribosomes. Probably stabilizes the collided disome species that initiates RQC (also have RQC-independent function in translation)

Ribosome splitting

Dom34/Pelota-Hbs1: ribosome splitting. Acts similarly to eRF1-eRF3 and also uses Rli1/ABCE1 to dissociate 40S, but does not cleave the peptidyl tRNA bond, leaving the nascent chain attached to the 60S subunit. Dom34/Pelota does not require the presence of an A-site stop codon and preferentially targets ribosomes that lack mRNA in the A site, which occurs when ribosomes reach the 3' end of truncated mRNAs and can no longer elongate. Dom34/Pelota may act as a stall sensor like Hel2/ZNF598 but does not identify collided ribosomes and rather may identify ribosomes with empty A sites and target them for RQC.

There is additional ribosome splitting pathway, because CGA-mediated RQC does not require Dom34 in yeast and ribosomes stalled by truncated mRNAs in the absence of Dom34 still undergo RQC. Dom34/Pelota- andHbs1-independent splitting in yeast could involve the RNA helicase Slh1, which functions in RQC after Asc1/RACK1 and Hel2/ZNF598

Slh1/ASCC3: ribosome splitting of internally stalled ribosomes.

RQT (RQC-trigger) complex: yeast Slh1, Cue3/Rqt3, Ykr023w/Rqt4

Functions in RQC downstream of Asc1/RACK1 and Hel2/ZNF598; may be involved in splitting internally stalled ribosomes. Slh1 is strictly required, the other RQT proteins promote RQC but are not required.

Marking nascent chain for degradation

Ltn1: ribosome splitting.Sspecifically associates with the 60S subunit Rqc2/NEMF: Rqc1/TCF25: CAT Tails:

RQC termination

Vms1/ANKZF1: extraction phase of RQC Contains a domain that folds similarly to eRF1 release factor. Releases nascent chains from 60S RQC complexes. Inside the 60S subunit, Vms1/ANKZF1 positions its catalytic loop toward the tRNA's 3'-CCA, where the tRNA conjugates to the nascent chain, then it cleaves the 3'-CCA from the tRNA to produce a 3'-CCA-linked nascent chain and a cleaved tRNA

Arb1: Vms1/ANKZF1 cofactor, adenosine triphosphatase. Stimulates tRNA cleavage by Vms1/ANKZF1

Cleavage of tRNA releases the nascent chain from the ribosome to permit proteasomal degradation. tRNA lacking the CCA is checked for errors by 3'-CCA-adding enzyme TRNT1, and then returned to the translational tRNA pool after addition of CCA. **Cdc48/p97:** nascent chain delivery to the proteasome. Proteasomal degradation of ubiquitylated nascent chain occurs after it is removed from 60S. Cdc48/p97, together with Ufd1/UFDL1 and Npl4/NPLOC4 (UN complex) bind to K48-linked ubiquitin. Cdc48/p97 hydrolyses ATP, unfolds polyubiquitylated protein by pulling it through the central pore.

Cdc48, other components of the yeast RQC complex (Ltn1, Rqc1, and Rqc2) and E3 ligase Tom1 bind to nascent chains in nonribosomal fractions. This complex also interacts with the proteasome .

RIBOSOME QC (RQC)

Inada, NAR.,2020

RQC pathway

RQC mechanism

RQC mechanism

Dom34-Hbs1-Rli1 or Hel2-Asc1-Slh1

facilitate subunit dissociation of stalled ribosomes **RQC proteins assemble on 60S**

- Ltn1 Ub ligase ubiquitinates the nascent peptide
- Rqc2, Cdc48 and cofactors remove nascent peptide for proteasomal degradation
 -Alternative pathways: via addition of CAT-tail (Ala and Thr extension)

CATylation

The canonical RQC is preferred but if ubiquitylation of the nascent polypeptide fails, CAT tail is added by Rqc2 to extract the trapped polypeptide CATylation_results in

- Ltn1-dependent degradation of aberrant proteins
- nascent chain aggregation
- activation of stress signaling
- nascent chain proteolysis