

Methods to study transcriptomes

• **SAGE** - serial analysis of gene expression

sequencing of small cDNA tags generated by type II restriction enzymes

• CAGE - cap analysis of gene expression

sequencing of small cDNA tags derived from capped transcripts

• 3' long SAGE

identification of SAGE tags that originate from 3' ends of transcripts

• tiling arrays

microarrays with overlapping probes that cover the complete genome

- **RNA Seq** high throughput sequencing of cDNAs
- **GRO-seq** genomic run-on sequencing

Methods to study transcriptomes

- ChIP (ChIP-chip, ChIP-Seq) chromatin immunoprecipitation and sequencing, indirectly reveals unknown ncRNAs
- **RIP-Seq** RNA immunoprecipitation-sequencing
- ChIRP Chromatin isolation by RNA Purification (+RNA-Seq)
- ChART Capture Hybridization Analysis of RNA targets (+RNA-Seq)

biotinylated oligonucleotides used to enrich for DNA sequences associated with a particular RNA

- CRAC CRosslinking and Analysis of cDNA
- PAR-CLIP PhotoActivatable ribonucleoside—enhanced CrossLinking and ImmunoPrecipitation
- HITS-CLIP High-Throughput Seq CLIP

Stark et al, Nat Rev Genet, 2019

RNA-seq technologies

Sequencing technology	Platform	Advantages	Disadvantages	Key applications
Short-read cDNA	Illumina, Ion Torrent	 Technology features very high throughput: currently 100–1,000 times more reads per run than long-read platforms Biases and error profiles are well understood (homopolymers are still an issue for lon Torrent) A huge catalogue of compatible methods and computational workflows are available Analysis works with degraded RNA 	 Sample preparation includes reverse transcription, PCR and size selection adding biases to all methods Isoform detection and quantitation can be limited Transcript discovery methods require a de novo transcriptome alignment and/or assembly step 	Nearly all RNA-seq methods have been developed for short-read cDNA sequencing: DGE, WTA, small RNA, single-cell, spatialomics, nascent RNA, translatome, structural and RNA-protein interaction analysis, and more are all possible
Long-read cDNA	PacBio, ONT	 Long reads of 1–50 kb capture many full-length transcripts Computational methods for de novo transcriptome analysis are simplified 	 Technology features low-to-medium throughput: currently only 500,000 to 10 million reads per run Sample preparation includes reverse transcription, PCR and size selection (for some protocols), adding biases to many methods Degraded RNA analysis is not recommended 	Sequencing is particularly suited to isoform discovery, de novo transcriptome analysis, fusion transcript discovery, and MHC, HLA or other complex transcript analysis
Long-read RNA	ONT	 Long reads of 1–50 kb capture many full-length transcripts Computational methods for de novo transcriptome analysis are simplified Sample preparation does not require reverse transcription or PCR-reducing biases RNA base modifications can be detected Poly(A) tail lengths can be directly estimated from single-molecule sequencing 	 Technology features low throughput: currently only 500,000 to 1 million reads per run Sample preparation and sequencing biases are not well understood Degraded RNA analysis is not recommended 	 Sequencing is particularly suited to isoform discovery, de novo transcriptome analysis, fusion transcript discovery, and MHC, HLA or other complex transcript analysis Ribonucelotide modifications can be detected

PARE: Parallel Analysis of RNA End mRNA DEGRADOME RNA-seq

Zhai et al., Methods, 2014

GMUCT: Genome-wide Mapping of Uncapped Transcripts Analysis of Co-Translational mRNA Decay (CTRD)

3' end and poly(A) tail analyses

Brouze et al, WIREsRNA, 2022

Poly(A) tail analyses, classical methods

Method B2

TAIL-seq: RNA 3' end sequencing Poly(A) tail length and 3' end modifications (e.g. U-tailing)

signal intensity analysis

3' end RNA analysis

Brouze et al, WIREsRNA, 2022

Nanopore long read sequencing

DNA and RNA -seq DRS or cDNA-based Poly(A) tail analysis RNA modification mapping

- For polyA⁺ RNA
- For nonpolyadenylated RNA addition of poly(A) or poly(I) is required
- Lower deepth than NGS

Ray and Hasselberth, Front Genet 2022; Tudek et al, Nat Comm, 2021

Nanopore Poly(A) tail analyses

Nanopore – beyond sequencing

Nascent RNA analyses

IP-based, formaldehyde crosslink

Purification of transcribed RNAs

Nascent RNA analyses

NET-seq Nuclear GRO-seq

Label nascent RNA with BrUTP/4sUTP IP with α -BrU or Convert 4sU to biotin Isolate biotinylated RNA

IP with α -Pol II

Stark et al, Nat Rev Genet, 2019

Nascent RNA methods

caRNA- seq

chromatin-associated RNAseq **CoPRO** coordinated precision run-on and sequencing **FISH** fluorescence in situ hybridization mNET-seq mammalian native elongating transcript seq **NET-seq** native elongating transcript seq PRO-cap precision run- on with cap selection **PRO-seq** precision run- on seq **SL AM-seq** thiol (SH)-linked alkylation for the metabolic sequencing of RNA **SMIT-seq** single-molecule intron tracking seq TT- seq transient transcriptome seq

Method	Advantages	Considerations
caRNA-seq	 Can be used to isolate all chromatin-associated RNA species Can be combined with methods that assay co-transcriptional processes, including RNA methylation and editing 	Also sequences non-nascent RNAs that stably associate with chromatin
Start-seq	 Simultaneously identifies initiation and pausing sites Allows de novo calling of putative enhancers 	Does not report transcription beyond the first ~100 nucleotides
Yeast NET-seq	 Is Pol II specific (antibody enrichment) Identifies Pol II positions at nucleotide resolution genome-wide 	Is limited to cells with epitope-tagged Pol II
mNET-seq	 Is Pol II specific (antibody enrichment) Identifies Pol II positions at nucleotide resolution genome-wide Can isolate Pol II with different post- translational modifications 	 Includes RNAs that are stably associated with Pol II Does not currently include RNA <30 nucleotides in length Has detected eRNA transcription from previously called enhancers
PRO-cap	 Identifies transcription initiation sites Allows de novo calling of putative enhancers 	Does not report transcription beyond the first ~100 nucleotides
PRO-seq	 Captures RNAs from transcriptionally competent polymerases Identifies positions of active transcription at nucleotide resolution genome-wide Allows de novo calling of putative enhancers 	 Does not measure polymerase backtracking Also captures RNAs being transcribed from Pol I and Pol III
CoPRO	 Simultaneously identifies initiation and pausing sites Measures RNA capping status 	Does not measure transcription beyond promoter-proximal pause site
SMIT-seq	Measures splicing status during transcription	Limited to species with short introns
TT-seq	 Captures RNAs from actively transcribing polymerases Can be used to determine RNA stability Identifies transcription termination sites 	 Does not detect Pol II pausing Has detected eRNA transcription from previously called enhancers
SLAM-seq and TimeLapse-seq	 Captures RNAs from actively transcribing polymerases Can be used to determine RNA stability 	 Requires deep sequencing to measure chemical conversion rate Long labelling times do not capture newly synthesized RNA
Intron sequential FISH	 Detects transcription of thousands of genes in single cells Contains positional information of transcribed genes in the 3D space of the nucleus 	 Does not report chromosomal positions of active Pol II complexes Does not distinguish different steps of transcription Requires a library of intron-targeting probes and series of hybridizations

Wissink et al, Nat Rev Genet, 2019

Nascent RNA methods

Method	Transcription step									
	TSSª	RNA capping	Promoter-proxi pausing	imal Co RN	o-transcriptional NA processing	Transcription termination	Pol II CTD modification	Transcription bursting		
Chromatin isolation-based										
caRNA-seq	No	No	No	Ye	s ^{42,105–107}	No	No	No		
Start-seq	Yes ⁴³	No	Yes ⁴³	No)	No	No	No		
mNET-seq	No	No	Yes41,73	Ye	S ^{41,63,64}	Yes ⁴¹	Yes41,63	No		
SMIT-seq	No	No	No	Ye	S ^{159,160}	No	No	No		
Run-on methods										
GRO-cap and PRO-cap	Yes4,42	No	No	No)	No	No	No		
GRO-seq, PRO-seq and ChRO–seq	No	No	Yes ^{42,48,74}	Ye	S ¹⁶⁶	Yes ⁴²	No	No		
CoPRO	Yes49	Yes49	Yes ⁴⁹	No)	No	No	No		
Metabolic labelling method	s									
TT-seq	No	No	No	No)	Yes ⁴⁷	No	No		
Imaging-based methods										
Intron sequential FISH	No	No	No	No)	No	No	Yes ⁵⁵ 610		
Short-read and long-read sequencing methods for genome-wide characterization of nascent RNAs										
GRO-seq pNET-seq plaNET-seq Nano-COP FLEP-seq POINT-nano	CB-F Nan FLE	RNA-seq o-COP P-seq NT-nano	PAL PAT TAII Poly	-seq -seq L-seq	DRS PAlso-seq FLEP-seq FLAM-seq	GRO-sec pNET-se plaNET-se FLEP-se	l q seq	t al, Nat Rev Gei I, Curr Op Plant E		
						00		k e t a		

Co-transcriptional splicing Elongation

Polyadenylation

Wissink Quin et

Termination

Analysis of Nascent Transcripts NET-seq GRO-seq

I. Isolation of PollI-bound RNAs

II. Nascent RNA labeling with 4sU

Churchman and Weissman, Nature, 2011

Nascent RNA analysis in mammalian cells

RNA modifications

RNA modifications

Sibbrrit et al, WIREsRNA 2013

Antibody-free m6A-seq DART-seq Naviantion targets Building to the second of the second

- Cytidine deaminase APOBEC1 fused to m⁶A-binding YTH domain (reader)
- APOBEC1-YTH induces C-to-U deamination at sites adjacent to m6A
- detected using RNA-seq

m⁵C RNA-seq

Identification of NAD⁺ capped RNAs

Adres Jasche (2016); Yiji Xia (2018-2022)

Vvedenskaya and Nickels, 2020, STAR Protocol

INTERACTIONS: RNA-proteins RNA-DNA RNA-RNA RNA-RNA

RBP - RNA Binding Proteins

- facilitate each step of RNA biogenesis
- participate in cellular procesess- transcription, export, translation, RNA decay
- form RNPs and subcellular granules and organelles

RNA insert is expressed in the context of **RNA** vector sequences tethered upstream of *lacZ* and *HIS3* reporter genes via a MS2 coat–LexA fusion protein. Gene activation depends on binding of the Gal4 activation domain–prey fusion protein.

RNP Immunoprecipitation (IP)

With specific antibodies or using tagged proteins

U snRNPs with anti-TMG cap antibody

(Luhrmann's lab)

IP of U1 snRNP with α -70K (U1 RNP specific protein)

Immunoaffinity +ion exchange

IP of snRNPs with $\alpha\text{-TMG}$ cap

FIG. 1. Purification of U1 snRNPs from S. cerevisiae. (A) Silver staining of snRNAs eluted from anti-m3G-cap (m7G eluate) and Ni-NTA affinity
Tandem Affinity Purification (TAP)

Oeffinger, Proteomics, 2012

MAGNETIC versus AGAROSE beads

- Agarose beads very low background and high binding capacity IP (centrifugation)
- Magnetic Agarose beads magnetic separation, high binding capacity IP, fast, easy
- Magnetic Particles M-270 IP of very large proteins/complexes, fast

Diameter 2.8 um volume 40 000 smaller than agarose/sepharose

CLIP

<u>CrossLinking</u> and <u>ImmunoPrecipitation</u>

HITS-CLIP

<u>High-Throughput Seq CLIP</u>

iCLIP

individual nucleoside resolution CLIP

Li et al., Genome Proteome Bioinformatics, 2014

PAR-CLIP

PhotoActivatable ribonucleosideenhanced CLIP

Solexa sequencing

http://www.jove.com/index/details.stp?ID=2034

В

365

- 4SU 6SG

in vivo PAR-CLIP

Castello et al.: He et al., Cell, 2016

OOPS, XRNAX, PTex – organic phase separation

Smith et al. Curr Op Chem Biol, 2020

TRAPP, RNP interactome, RPBome

TRAPP/PAR-TRAPP - RNA-associated protein purification

RNA - protein interactions

Nascent RNA can be labeled with 4-thioU (4-SU) or 6-thioG (6-SG)

RICK/CARIC: with 5-ethynylU (5-EU), biotin is added to RNA by click chemistry for streptavidin capture

RNase-assisted RNA chromatography

beads beads let-7a-1 TL miR-101-1 TL miR-101-1 TL beads et-7a-1 TL miR-101-1 TL

Hegarat et al., NAR, 2010; Michlewski and Caceres, RNA, 2010

RNA chromatography in vivo

Oeffinger, Proteomics, 2012

RNA-seq-based methods for mapping RNA structures, RNA-RNA and RNA-DNA interactions

Nguyen et al, TiG, 2018

RNA structures and RNA-RNA interactions

Ye et al, Mol Cell, 2024

RNA-seq based mapping of RNA-RNA interactions

Sequencing based for mapping RNA-RNA interactions						
CLASH	 Stringent purification conditions remove nonphysiological interactions. 	Requires prior knowledge of an RNA-binding protein.Requires a good antibody.				
hiCLIP	 Incorporation of an adaptor between two RNA molecules increases ligation efficiency and improves accuracy in sequence mapping. 	 Requires prior knowledge of an RNA-binding protein. Requires a good antibody. No <i>in vivo</i> crosslinking step may incur challenges in differentiating <i>bona fide</i> and spurious RNA attachments. 				
PARIS	 Many-to-many mapping. 	 4'-Aminomethyl trioxsalen (AMT) preferentially crosslinks pyrimidine bases and may introduce bias. 				
SPLASH	 Improves signal-to-noise ratio by leveraging biotinylated psoralen. Many-to-many mapping. 	 Psoralen preferentially crosslinks pyrimidine bases and may introduce bias. 				
LIGR-seq	 Many-to-many mapping. 	 AMT preferentially crosslinks pyrimidine bases and may introduce bias. 				
MARIO	 Many-to-many mapping. Incorporation of an adaptor between two RNA molecules increases ligation efficiency and improves accuracy in sequence mapping. Reports both between- and within-molecule interactions. 	 Loses RNA duplexes that are not associated with any proteins. 				
	Captures proximal regions of an RNA molecule in 3D.Reveals single-stranded regions of each RNA.					

RNA-seq based mapping of RNA structures

Sequencing based for mapping RNA structures

Method	Advantages	Limitations				
Enzyme-based methods						
PIP-seq	 Reveals both protein-bound RNA regions and RNA secondary structure. Provides strand-specific information. 	 Limited resolution at small nucleotide bulges and loops. 				
PARS	 Increased sensitivity by sequencing both single- and double-stranded regions. 	RNA was folded in vitro.				
PARTE	 Measures melting temperature. Single-nucleotide resolution. Preserves <i>in vivo</i> RNA modifications. Can infer RNA regulatory motifs. 					
FragSeq	Simple and fast protocol.Accompanied with modifiable software.					
Chemical-based method	S					
DMS-seq	Identifies RNA structure in native conditions.Single-nucleotide resolution.	Limited to the analysis of two bases (As and Cs).RNA-binding proteins can block DMS activity.				
icSHAPE	Measures base flexibility.Single-nucleotide resolution.	 Limited to the analysis of relatively short (~300 nt) in vitro- transcribed RNAs. 				
Structure-seq	Single-nucleotide resolution.Applicable to both <i>in vitro</i> and <i>in vivo</i> analyses.	Limited to the analysis of two bases (As and Cs).RNA-binding proteins can block DMS activity.				
Mod-seq	Can probe structures of long RNAs <i>in vivo</i>.Single-nucleotide resolution.	 Limited to the analysis of two bases (As and Cs). 				
CIRS-seq	Single-nucleotide resolution.Can identify structural requirements for RNA-binding proteins.					
SHAPE-MaP	 Can be customized for different applications. Applicable to analysis of long RNAs. Can infer structural changes of single-nucleotide and other allelic polymorphisms. 	- Length of the RNA must be at least ${\sim}150$ nt for the randomer and native workflow, and at least ${\sim}40$ nt for the small-RNA workflow.				

RNA structure and RNA-protein interactions

PARS: Parallel Analysis of RNA Structure

RNA structure by enzymatic cleavages followed by RNA-seq PARS used to establish structures of > 3000 yeast transcripts Unexpected conclusion: coding mRNA regions are more structured than UTRs

PARS: Parallel Analysis of RNA Structure Molecular Cell Genome-wide Measurement of RNA Folding Energies

Molecular Cell *48*, 169–181, October 26, 2012 Yue Wan,¹ Kun Qu,^{1,8} Zhengqing Ouyang,^{1,2,8} Michael Kertesz,³ Jun Li,⁴ Robert Tibshirani,⁴ Debora L. Makino,⁵ Robert C. Nutter,⁶ Eran Segal,^{7,*} and Howard Y. Chang^{1,*}

Regulatory Impact of RNA Secondary Structure across the Arabidopsis Transcriptome^{WDA}

The Plant Cell 2012

Fan Li,^{a,b,c,1} Qi Zheng,^{a,b,1} Lee E. Vandivier,^{a,b,d} Matthew R. Willmann,^{a,b} Ying Chen,^{a,b,c} and Brian D. Gregory^{a,b,c,d,2}

RNA–RNA interactions

CLASH: intra- and intermolecular RNA-RNA interactions

RNA C interacts with RNA D

Kudla et al., PNAS, 2011; Helwak and Tollervey, Nat Protocol 2014

MARIO: intra- and intermolecular RNA-RNA interactions

<u>Mapping RNA interactome in vivo</u>

- (1) cross-linking RNAs to proteins
- (2) RNA fragmentation, protein denaturing and biotinylation
- (3) immobilization of RNA-binding proteins via biotin at low density
- (4) ligation of a biotinylated RNA linker to RNA 5' end
- (5) proximity ligation under dilute conditions
- (6) removal of unligated RNA by RNase H activity of T7 exonuclease
- (7) reversal of crosslink, protein removal, RNA purification
- (8) biotin pull-down of chimeric RNA with biotinylated linker
- (9) library construction

SHAPE, PARIS/SPLASH/LIGR: RNA structure in vivo

Chemical and enzymatical - based structure probing

SHAPE: Selective 2'- Hydroxyl Acylation and Primer Extension; **SHAPE-seq:** SHAPE and RNA-seq

PARIS: Psoralen Analysis of RNA Interactions and Structures

SPLASH: Sequencing of Psoralen crosslinked, Ligated, and Selected Hybrids

LIGR-seq: LIGation of interacting RNA followed by high-throughput Sequencing

SHAPE <u>chemicals</u>: DMS, dimethyl sulfate; 1M7, 1-methyl-7-nitroisatoic anhydride SHAPE <u>enzymes</u>: P1 nuclease, RNases V1 and S1 PARIS/SPLASH <u>chemicals</u>: psoralen; AMT, 4'-aminomethyltrioxsalen

Table 1. Transcriptome-wide RNA Structure Probing Methods							
Assay	Probing Agent	Detection	In Vitro Probing	In Vivo Probing			
FragSeq	P1 nuclease	single-stranded bases	Х				
PARS	RNase V1 and S1 nuclease	paired and single- stranded regions	х				
SHAPE-seq	1M7	single-stranded bases	Х				
mod-seq	DMS	unpaired A & C		Х			
DMS-seq	DMS	unpaired A & C	Х	Х			
Structure-seq	DMS	unpaired A & C	Х	Х			
icSHAPE	NAI-N ₃	single-stranded bases		Х			
SHAPE-MaP	1M7	single-stranded or unbound bases	Х	х			
PARIS	AMT	base-paired sequence partners		х			
LIGR-seq	AMT	base-paired sequence partners		х			
SPLASH	biotinylated psoralen	base-paired sequence partners		х			

RNA structure: MaP, SHAPE, SHAPE-MaP, RING-MaP, Mod,

MaP, SHAPE, SHAPE-MaP, RING-MaP, Mod, CRIS etc...

RNA structure PARIS, SPLASH, LIGR

- *in vivo* **psoralen** or **AMT**, intercalate into RNA duplex and generate inter-strand adducts between juxtaposed pyrimidine bases upon **365 nm UV**
- ssRNAse S1 limited digest
- **RNA end proximity ligation** (circRNA ligase)
- removal of uncrosslinked RNA (ss and structured RNAase R1)
 - crosslink reversal
 - RNA-seq
 - [AMT = psoralen derivative 4'aminomethyltrioxalen]

Graveley, Mol Cell, 2016

RNA-protein interactions and RNA structure

icSHAPE: RNA structure in vivo

icSHAPE: <u>click</u> selective 2'-hydroxyl acylation and profiling

mRNA fluorescent labeling

FRET: fluorescent (Förster) resonace energy transfer

RNA modifications (cleavage, ligation, etc) RNA structure remodeling RNA-RNA, RNA-protein and protein-protein interactions

Correa and Schults, Lab Yechniques, 2009
RNA fluorescent labelling for imaging A) A) FISH GFP TTTTTTT MCP target RNA B) Molecular Beacon TTT target RNA MS2 Q target RNA B) split-GFP C) FIT **Pumilio** variants TTT target RNA target RNA C) Spinach A) Nucleosides G target RNA A **RNA** aptamers Polymerase **Click Reaction** Nucleoside triphosphates AdoMet B) TO1-biotin **BI Broccoli** analog Mango-II AAAA **Click Reaction** MTase C) Agmatine analog Cbl-4xGlyATTO TMR-DN RhoBAST Riboglow **Click Reaction** Tias

Wissink et al, Nat Rev Genet, 2019

RNA fluorescent labelling for imaging

Mamot et al, Angew Chem, 2017 Rinaldi et al., Methods Mol Biol, 2015 Kirschman et al. NAR 2017

FISH: Fluorescent in situ hybridization

Abbaszadeh and Gavis, Methods, 2016

RNA localization

Larson et al., TiCB, 2009

Complex quantification allows analysis of single-molecule gene expression, e.g. transcription/splicing in real time, RNA level in single cells.

MDN1 mRNA DAPI

doxycyclin induced reporter

at transcription sites (nucleus)

Constitutively expressed genes are transcribed by single events separated in time. Regulated genes (e.g. by SAGA) are expressed by transcriptional bursts

Multi-colored smFISH:

nucleus, cytoplasm and SG

Nuclear mRNAs are partially extended Translating mRNAs usually do not have a stable circular form mRNAs in stress granules are more compacted than translating mRNAs

FRAP: RNA localization

Edouard Bertrand, Montpellier, *RIBOSYS*

TREAT: 3'-RNA end accumulation during turnover

Single-mRNA imaging of RNA degradation in single cells

Translatome analyses

Translatome analyses

Ribosome Profiling Ribosome Mapping Ribo-seq

In vivo analysis of translating ribosomes and mRNAs

- transcript abundancy
- translation kinetics and
- efficiency/protein synthesis rate
- polysome occupancy profiles
- co-translational processes
- combined with RNASeq- correlations
 between transcription and translation
 short and alternative ORFs

Translatome analyses

APEX and BioID

Proximity biotin-based labeling methods

BiolD

- An enzyme (BioID- biotin ligase; APEX- engineered ascorbate peroxidase) is targeted to a specific subcellular location (e.g. mitochondria) via fusion with protein markers or signal peptides.
- A probe (biotin or biotin-phenol) is enzymatically converted to biotin-conjugated reactive intermediates that react with nearby proteins/RNAs.
- Biotinylated proteins or RNAs are enriched with streptavidin beads and identified by mass spectrometry or RNA-seq, respectively.

APEX biotin-phenol H2O2 H2O2 -OH

BioID

Biotin

Ligase'

BAIT

BAIT

biotin

AMP

biotinoyl-5'-AMP

biotin-phenoxyl radical

Qin et al, NatMethods, 2021; Li et al, Cell Chem Biol , 2020

Fazal et al, Cell, 2019; Trinkle-Mulcahy, F1000Research, 2020; Qin et al, NatMethods, 2021; Li et al, Cell Chem Biol, 2020

TurbolD

TurbolD

- Engineered, high activity biotin ligase.
- Uses ATP to convert biotin into biotin-AMP that covalently labels proximal proteins.
- Non toxic system.
- Gives higher temporal resolution and broader application in vivo.

Split-TurbolD

- Consists of two inactive fragments of TurboID that are brought by proteinprotein or organelle-organelle interactions.
- Has better targeting specificity than fulllength enzymes.

Distal endogenous proteins

Proximity labeling systems

Enzyme	Туре	Size (kDa)	Labeling time	Modification sites	Advantages	Limitations
APEX	Peroxidase	28	1 min	Tyr, Trp, Cys, His	High temporal resolution; versatility for both protein and RNA labeling	Limited application in vivo because of the toxicity of H_2O_2
APEX2	Peroxidase	28	1 min	Tyr, Trp, Cys, His	High temporal resolution; versatility for both protein and RNA labeling	Limited application in vivo because of the toxicity of H_2O_2
HRP	Peroxidase	44	1 min	Tyr, Trp, Cys, His	High temporal resolution; versatility for both protein and RNA labeling	Limited application in vivo because of the toxicity of H ₂ O ₂ ; limited to secretory pathway and extracellular applications
BioID	Biotin ligase	35	18 h	Lys	Non-toxic for in vivo applications	Poor temporal resolution as a result of low catalytic activity
BioID2	Biotin ligase	27	18 h	Lys	Non-toxic for in vivo applications	Poor temporal resolution as a result of low catalytic activity
BASU	Biotin ligase	29	18 h	Lys	Non-toxic for in vivo applications	Poor temporal resolution as a result of low catalytic activity
TurbolD	Biotin ligase	35	10 min	Lys	Highest activity biotin ligase; non-toxic for in vivo applications	Potentially less control of labeling window as a result of high biotin affinity
miniTurbo	Biotin ligase	28	10 min	Lys	High activity; non-toxic for in vivo applications; smaller than TurboID	Lower catalytic activity and stability as compared to TurbolD

APEX: applications

Protein and RNA localization RNP organization - translation, granule composition

APEX: applications

Protein-RNA (RNP) complexes

SUMMARY or HOW TO PASS THE EXAM?

- THEORY
- METHODS
- GENERAL IDEAS, CONCEPTS, SOLUTIONS
- PATHWAYS
- MECHANISMS

